Search results
Results From The WOW.Com Content Network
Sucrose is formed by plants, algae and cyanobacteria but not by other organisms. Sucrose is the end product of photosynthesis and is found naturally in many food plants along with the monosaccharide fructose. In many fruits, such as pineapple and apricot, sucrose is the main sugar. In others, such as grapes and pears, fructose is the main sugar.
Sucrose-phosphate synthase (SPS) is a plant enzyme involved in sucrose biosynthesis. Specifically, this enzyme catalyzes the transfer of a hexosyl group from uridine diphosphate glucose ( UDP-glucose ) to D- fructose 6-phosphate to form UDP and D-sucrose-6-phosphate.
In enzymology, a sucrose synthase (EC 2.4.1.13) is an enzyme that catalyzes the chemical reaction. NDP-glucose + D-fructose ⇌ NDP + sucrose. Thus, the two substrates of this enzyme are NDP-glucose and D-fructose, whereas its two products are NDP and sucrose.
Plants synthesize starch in two types of tissues. The first type is storage tissues, for example, cereal endosperm, and storage roots and stems such as cassava and potato. The second type is green tissue, for example, leaves, where many plant species synthesize transitory starch on a daily basis.
Sucrose, a disaccharide formed from condensation of a molecule of glucose and a molecule of fructose. A disaccharide (also called a double sugar or biose) [1] is the sugar formed when two monosaccharides are joined by glycosidic linkage. [2] Like monosaccharides, disaccharides are simple sugars soluble in water.
The remaining 1/6 of triose phosphate can be converted into sucrose or stored as starch. Fru-2,6- P 2 inhibits production of fructose 6-phosphate, a necessary element for sucrose synthesis. When the rate of photosynthesis in the light reactions is high, triose phosphates are constantly produced and the production of Fru-2,6- P 2 is inhibited ...
UTP—glucose-1-phosphate uridylyltransferase is an enzyme found in all three domains (bacteria, eukarya, and archaea) as it is a key player in glycogenesis and cell wall synthesis. Its role in sugar metabolism has been studied extensively in plants in order to understand plant growth and increase agricultural production.
Sucrose is a non-reducing sugar, so will not test positive with Benedict's solution. To test for sucrose, the sample is treated with sucrase. The sucrose is hydrolysed into glucose and fructose, with glucose being a reducing sugar, which in turn tests positive with Benedict's solution. [citation needed].