Ad
related to: why is mitochondrial uncoupling good for you essay pdf
Search results
Results From The WOW.Com Content Network
An uncoupler or uncoupling agent is a molecule that disrupts oxidative phosphorylation in prokaryotes and mitochondria or photophosphorylation in chloroplasts and cyanobacteria by dissociating the reactions of ATP synthesis from the electron transport chain.
Mitochondrial uncoupling protein 3 (UCP3) is a members of the larger family of mitochondrial anion carrier proteins (MACP). UCPs facilitate the transfer of anions from the inner to the outer mitochondrial membrane and transfer of protons from the outer to the inner mitochondrial membrane, reducing the mitochondrial membrane potential in mammalian cells.
Mitochondrial uncoupling protein 2 is a protein that in humans is encoded by the UCP2 gene. [ 5 ] Mitochondrial uncoupling proteins (UCP) are members of the larger family of mitochondrial anion carrier proteins (MACP).
An uncoupling protein (UCP) is a mitochondrial inner membrane protein that is a regulated proton channel or transporter. An uncoupling protein is thus capable of dissipating the proton gradient generated by NADH-powered pumping of protons from the mitochondrial matrix to the mitochondrial intermembrane space. The energy lost in dissipating the ...
Thermogenin (called uncoupling protein by its discoverers and now known as uncoupling protein 1, or UCP1) [5] is a mitochondrial carrier protein found in brown adipose tissue (BAT). It is used to generate heat by non-shivering thermogenesis , and makes a quantitatively important contribution to countering heat loss in babies which would ...
Mitochondrial uncoupling protein 4 is a protein that in humans is encoded by the SLC25A27 gene. [ 5 ] [ 6 ] [ 7 ] Mitochondrial uncoupling proteins (UCP) are members of the larger family of mitochondrial anion carrier proteins (MACP).
Many MC proteins preferentially catalyze the exchange of one solute for another ().A variety of these substrate carrier proteins, which are involved in energy transfer, have been found in the inner membranes of mitochondria and other eukaryotic organelles such as the peroxisome and facilitate the transport of inorganic ions, nucleotides, amino acids, keto acids and cofactors across the membrane.
Molecular oxygen is a good terminal electron acceptor because it is a strong oxidizing agent. The reduction of oxygen does involve potentially harmful intermediates. [ 81 ] Although the transfer of four electrons and four protons reduces oxygen to water, which is harmless, transfer of one or two electrons produces superoxide or peroxide anions ...