Search results
Results From The WOW.Com Content Network
The two skew perpendicular opposite edges of a regular tetrahedron define a set of parallel planes. When one of these planes intersects the tetrahedron the resulting cross section is a rectangle. [11] When the intersecting plane is near one of the edges the rectangle is long and skinny. When halfway between the two edges the intersection is a ...
Given a cube with edge length . The face diagonal of a cube is the diagonal of a square a 2 {\displaystyle a{\sqrt {2}}} , and the space diagonal of a cube is a line connecting two vertices that is not in the same face, formulated as a 3 {\displaystyle a{\sqrt {3}}} .
This result leads to a similar bound on the number of edges of three-dimensional relative neighborhood graphs. [29] In four or more dimensions, any complete bipartite graph is a unit distance graph, realized by placing the points on two perpendicular circles with a common center, so unit distance graphs can be dense graphs. [7]
Doubling the cube is the construction, using only a straightedge and compass, of the edge of a cube that has twice the volume of a cube with a given edge. This is impossible because the cube root of 2, though algebraic, cannot be computed from integers by addition, subtraction, multiplication, division, and taking square roots.
Each pair of triangles gives a path of length three that includes the edge connecting the triangles together with two of the four remaining triangle edges. [3] By applying Petersen's theorem to the dual graph of a triangle mesh and connecting pairs of triangles that are not matched, one can decompose the mesh into cyclic strips of triangles.
This group has six mirror planes, each containing two edges of the cube or one edge of the tetrahedron, a single S 4 axis, and two C 3 axes. T d is isomorphic to S 4, the symmetric group on 4 letters, because there is a 1-to-1 correspondence between the elements of T d and the 24 permutations of the four 3-fold axes.
[2] Three mutually perpendicular golden ratio rectangles, with edges connecting their corners, form a regular icosahedron. Another way to construct it is by putting two points on each surface of a cube. In each face, draw a segment line between the midpoints of two opposite edges and locate two points with the golden ratio distance from each ...
Two edges have dihedral angles of 90°, and four edges have dihedral angles of 60°. Some tetragonal disphenoids will form honeycombs. The disphenoid whose four vertices are (-1, 0, 0), (1, 0, 0), (0, 1, 1), and (0, 1, -1) is such a disphenoid. [13] [14] Each of its four faces is an isosceles triangle with edges of lengths √ 3, √ 3, and 2.