When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Concurrent lines - Wikipedia

    en.wikipedia.org/wiki/Concurrent_lines

    Concurrent lines arise in the dual of Pappus's hexagon theorem. For each side of a cyclic hexagon, extend the adjacent sides to their intersection, forming a triangle exterior to the given side. Then the segments connecting the circumcenters of opposite triangles are concurrent. [8]

  3. Projective geometry - Wikipedia

    en.wikipedia.org/wiki/Projective_geometry

    The line joining them is then called the Pascal line of the hexagon. Brianchon: If all six sides of a hexagon are tangent to a conic, then its diagonals (i.e. the lines joining opposite vertices) are three concurrent lines. Their point of intersection is then called the Brianchon point of the hexagon.

  4. Ceva's theorem - Wikipedia

    en.wikipedia.org/wiki/Ceva's_theorem

    The left-hand side of this equation is a vector that has the same direction as the line CF, and the right-hand side has the same direction as the line AB. These lines have different directions since A, B, C are not collinear. It follows that the two members of the equation equal the zero vector, and

  5. Finite geometry - Wikipedia

    en.wikipedia.org/wiki/Finite_geometry

    A spread of a projective space is a partition of its points into disjoint lines, and a packing is a partition of the lines into disjoint spreads. In PG(3,2), a spread would be a partition of the 15 points into 5 disjoint lines (with 3 points on each line), thus corresponding to the arrangement of schoolgirls on a particular day.

  6. Collinearity - Wikipedia

    en.wikipedia.org/wiki/Collinearity

    Given a set of collinear points, by plane duality we obtain a set of lines all of which meet at a common point. The property that this set of lines has (meeting at a common point) is called concurrency, and the lines are said to be concurrent lines. Thus, concurrency is the plane dual notion to collinearity.

  7. Incidence (geometry) - Wikipedia

    en.wikipedia.org/wiki/Incidence_(geometry)

    Let l 1 = [a 1, b 1, c 1] and l 2 = [a 2, b 2, c 2] be a pair of distinct lines. Then the intersection of lines l 1 and l 2 is point a P = (x 0, y 0, z 0) that is the simultaneous solution (up to a scalar factor) of the system of linear equations: a 1 x + b 1 y + c 1 z = 0 and a 2 x + b 2 y + c 2 z = 0. The solution of this system gives: x 0 ...

  8. Arrangement of lines - Wikipedia

    en.wikipedia.org/wiki/Arrangement_of_lines

    However, parallel (non-crossing) pairs of lines are less restricted in hyperbolic line arrangements than in the Euclidean plane: in particular, the relation of being parallel is an equivalence relation for Euclidean lines but not for hyperbolic lines. [51] The intersection graph of the lines in a hyperbolic arrangement can be an arbitrary ...

  9. Cyclic quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Cyclic_quadrilateral

    Examples of cyclic quadrilaterals. In Euclidean geometry, a cyclic quadrilateral or inscribed quadrilateral is a quadrilateral whose vertices all lie on a single circle.This circle is called the circumcircle or circumscribed circle, and the vertices are said to be concyclic.

  1. Related searches concurrent lines vs intersecting sides in real life problems in school science

    examples of concurrent linesthree lines are simultaneous