Search results
Results From The WOW.Com Content Network
The nuclear shell model is partly analogous to the atomic shell model, which describes the arrangement of electrons in an atom, in that a filled shell results in better stability. When adding nucleons ( protons and neutrons ) to a nucleus, there are certain points where the binding energy of the next nucleon is significantly less than the last one.
The liquid drop model is one of the first models of nuclear structure, proposed by Carl Friedrich von Weizsäcker in 1935. [5] It describes the nucleus as a semiclassical fluid made up of neutrons and protons, with an internal repulsive electrostatic force proportional to the number of protons.
The mere fact that an assembly is supercritical does not guarantee that it contains any free neutrons at all. At least one neutron is required to "strike" a chain reaction, and if the spontaneous fission rate is sufficiently low it may take a long time (in 235 U reactors, as long as many minutes) before a chance neutron encounter starts a chain reaction even if the reactor is supercritical.
The reactor support structure was made of wood, which supported a pile (hence the name) of graphite blocks, embedded in which was natural uranium oxide 'pseudospheres' or 'briquettes'. Soon after the Chicago Pile, the Metallurgical Laboratory developed a number of nuclear reactors for the Manhattan Project starting in 1943.
The chemical properties of an atom are mostly determined by the configuration of electrons that orbit the atom's heavy nucleus. The electron configuration is determined by the charge of the nucleus, which is determined by the number of protons, or atomic number. The number of neutrons is the neutron number. Neutrons do not affect the electron ...
The dip in the charge density near the Y-axis indicates the lower nuclear core density of some light nuclides. [26] Electron scattering techniques have yielded clues as to the internal structure of light nuclides. Proton-neutron pairs experience a strongly repulsive component of the nuclear force within ≈ 0.5 fm (see "Space between nucleons ...
The majority of energy in a nuclear reactor is generated by fission (the four main fissile isotopes in nuclear reactors are 235 U, 238 U, 239 Pu and 241 Pu), the resultant neutron-rich daughter nuclides rapidly undergo additional beta decays, each converting one neutron to a proton and an electron and releasing an electron antineutrino.
A model of an atomic nucleus showing it as a compact bundle of protons (red) and neutrons (blue), the two types of nucleons.In this diagram, protons and neutrons look like little balls stuck together, but an actual nucleus (as understood by modern nuclear physics) cannot be explained like this, but only by using quantum mechanics.