Search results
Results From The WOW.Com Content Network
Transformation optics is the foundation for exploring a diverse set of theoretical, numerical, and experimental developments, involving the perspectives of the physics and engineering communities. The multi-disciplinary perspectives for inquiry and designing of materials develop understanding of their behaviors, properties, and potential ...
His initial research focused on steady-state heat conduction equations. Using transformation theory, he introduced the concept of thermal cloaking. [7] In 2013, the application of metamaterials was further extended to particle diffusion systems, with the first proposal of particle diffusion cloaking under low diffusivity conditions. [8]
Hence, with these two papers, transformation optics is born. [2] [9] [10] Transformation optics subscribes to the capability of bending light, or electromagnetic waves and energy, in any preferred or desired fashion, for a desired application. Maxwell's equations do not vary even though coordinates transform. Instead it is the values of the ...
The non-chiral Su–Schrieffer–Heeger model (=), can be associated with symmetry class BDI with an integer topological invariant due to gauge invariance. [6] [7] The problem is similar to the integer quantum Hall effect and the quantum anomalous Hall effect (both in =) which are A class, with integer Chern number.
Absolutely closed See H-closed Accessible See . Accumulation point See limit point. Alexandrov topology The topology of a space X is an Alexandrov topology (or is finitely generated) if arbitrary intersections of open sets in X are open, or equivalently, if arbitrary unions of closed sets are closed, or, again equivalently, if the open sets are the upper sets of a poset.
The central object of study in topological dynamics is a topological dynamical system, i.e. a topological space, together with a continuous transformation, a continuous flow, or more generally, a semigroup of continuous transformations of that space.
This is a list of useful examples in general topology, a field of mathematics. Alexandrov topology; Cantor space; Co-kappa topology Cocountable topology; Cofinite topology; Compact-open topology; Compactification; Discrete topology; Double-pointed cofinite topology; Extended real number line; Finite topological space; Hawaiian earring; Hilbert cube
For example, in 1995, Guerra [17] fabricated a transparent grating with 50 nm lines and spaces, and then coupled this (what would be later called) photonic metamaterial with an immersion objective to resolve a silicon grating having 50 nm lines and spaces, far beyond the diffraction limit for the 650 nm wavelength illumination in air.