Search results
Results From The WOW.Com Content Network
It has n 2 + 2n + 1 vertices: n 2 formed from the product of a leaf in both factors, 2n from the product of a leaf in one factor and the hub in the other factor, and one remaining vertex formed from the product of the two hubs. Each leaf-hub product vertex in G dominates exactly n of the leaf-leaf vertices, so n leaf-hub vertices are needed to ...
Clique-sums have a close connection with treewidth: If two graphs have treewidth at most k, so does their k-clique-sum.Every tree is the 1-clique-sum of its edges. Every series–parallel graph, or more generally every graph with treewidth at most two, may be formed as a 2-clique-sum of triangles.
Subgraph isomorphism is a generalization of the graph isomorphism problem, which asks whether G is isomorphic to H: the answer to the graph isomorphism problem is true if and only if G and H both have the same numbers of vertices and edges and the subgraph isomorphism problem for G and H is true. However the complexity-theoretic status of graph ...
The case of exact graph matching is known as the graph isomorphism problem. [1] The problem of exact matching of a graph to a part of another graph is called subgraph isomorphism problem. Inexact graph matching refers to matching problems when exact matching is impossible, e.g., when the number of vertices in the two graphs are different. In ...
In graph theory and theoretical computer science, a maximum common induced subgraph of two graphs G and H is a graph that is an induced subgraph of both G and H, and that has as many vertices as possible. Finding this graph is NP-hard. In the associated decision problem, the input is two graphs G and H and a number k.
Switching {X,Y} in a graph. A two-graph is equivalent to a switching class of graphs and also to a (signed) switching class of signed complete graphs.. Switching a set of vertices in a (simple) graph means reversing the adjacencies of each pair of vertices, one in the set and the other not in the set: thus the edge set is changed so that an adjacent pair becomes nonadjacent and a nonadjacent ...
In graph theory, two graphs and ′ are homeomorphic if there is a graph isomorphism from some subdivision of to some subdivision of ′.If the edges of a graph are thought of as lines drawn from one vertex to another (as they are usually depicted in diagrams), then two graphs are homeomorphic to each other in the graph-theoretic sense precisely if their diagrams are homeomorphic in the ...
Two graphs G and H are homomorphically equivalent if G → H and H → G. [4] The maps are not necessarily surjective nor injective. For instance, the complete bipartite graphs K 2,2 and K 3,3 are homomorphically equivalent: each map can be defined as taking the left (resp. right) half of the domain graph and mapping to just one vertex in the left (resp. right) half of the image graph.