When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Euler characteristic - Wikipedia

    en.wikipedia.org/wiki/Euler_characteristic

    Any convex polyhedron's surface has Euler characteristic = + = . This equation, stated by Euler in 1758, [2] is known as Euler's polyhedron formula. [3] It corresponds to the Euler characteristic of the sphere (i.e. = ), and applies identically to spherical polyhedra. An illustration of the formula on all Platonic polyhedra is given below.

  3. Chamfer (geometry) - Wikipedia

    en.wikipedia.org/wiki/Chamfer_(geometry)

    In geometry, the chamfered octahedron is a convex polyhedron constructed by truncating the 8 order-3 vertices of the rhombic dodecahedron. These truncated vertices become congruent equilateral triangles, and the original 12 rhombic faces become congruent flattened hexagons.

  4. Octahedron - Wikipedia

    en.wikipedia.org/wiki/Octahedron

    A regular octahedron is an octahedron that is a regular polyhedron. All the faces of a regular octahedron are equilateral triangles of the same size, and exactly four triangles meet at each vertex. A regular octahedron is convex, meaning that for any two points within it, the line segment connecting them lies entirely within it.

  5. Modulus and characteristic of convexity - Wikipedia

    en.wikipedia.org/wiki/Modulus_and_characteristic...

    In mathematics, the modulus of convexity and the characteristic of convexity are measures of "how convex" the unit ball in a Banach space is. In some sense, the modulus of convexity has the same relationship to the ε-δ definition of uniform convexity as the modulus of continuity does to the ε-δ definition of continuity.

  6. Convex function - Wikipedia

    en.wikipedia.org/wiki/Convex_function

    A function (in black) is convex if and only if the region above its graph (in green) is a convex set. A graph of the bivariate convex function x 2 + xy + y 2. Convex vs. Not convex

  7. Superquadrics - Wikipedia

    en.wikipedia.org/wiki/Superquadrics

    less than 1: a pointy octahedron modified to have concave faces and sharp edges. exactly 1: a regular octahedron. between 1 and 2: an octahedron modified to have convex faces, blunt edges and blunt corners. exactly 2: a sphere; greater than 2: a cube modified to have rounded edges and corners. infinite (in the limit): a cube

  8. Regular polyhedron - Wikipedia

    en.wikipedia.org/wiki/Regular_polyhedron

    A convex regular polyhedron has all of three related spheres (other polyhedra lack at least one kind) which share its centre: An insphere, tangent to all faces. An intersphere or midsphere, tangent to all edges. A circumsphere, tangent to all vertices.

  9. Ideal polyhedron - Wikipedia

    en.wikipedia.org/wiki/Ideal_polyhedron

    This fact can be used to calculate the dihedral angles themselves for a regular or edge-symmetric ideal polyhedron (in which all these angles are equal), by counting how many edges meet at each vertex: an ideal regular tetrahedron, cube or dodecahedron, with three edges per vertex, has dihedral angles = / = (), an ideal regular octahedron or ...