When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Composite number - Wikipedia

    en.wikipedia.org/wiki/Composite_number

    A composite number with two prime factors is a semiprime or 2-almost prime (the factors need not be distinct, hence squares of primes are included). A composite number with three distinct prime factors is a sphenic number. In some applications, it is necessary to differentiate between composite numbers with an odd number of distinct prime ...

  3. List of types of numbers - Wikipedia

    en.wikipedia.org/wiki/List_of_types_of_numbers

    Even and odd numbers: An integer is even if it is a multiple of 2, and is odd otherwise. Prime number: A positive integer with exactly two positive divisors: itself and 1. The primes form an infinite sequence 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, ... Composite number: A positive integer that can be factored into a product of smaller positive ...

  4. Lehmer's totient problem - Wikipedia

    en.wikipedia.org/wiki/Lehmer's_totient_problem

    In mathematics, Lehmer's totient problem asks whether there is any composite number n such that Euler's totient function φ(n) divides n − 1. This is an unsolved problem. It is known that φ(n) = n − 1 if and only if n is prime. So for every prime number n, we have φ(n) = n − 1 and thus in particular φ(n) divides n − 1. D. H.

  5. Wikipedia:Reference desk/Archives/Mathematics/2018 November 17

    en.wikipedia.org/wiki/Wikipedia:Reference_desk/...

    The nth composite number is bounded below by n. Because all even numbers greater than 2 and some odd numbers are composite, the presence of at least 2 composite odd numbers proves that the nth composite number will always be less than 2n for all n where 2n > the second odd composite number (15.)

  6. Euler–Jacobi pseudoprime - Wikipedia

    en.wikipedia.org/wiki/Euler–Jacobi_pseudoprime

    If n is an odd composite integer that satisfies the above congruence, then n is called an Euler–Jacobi pseudoprime (or, more commonly, an Euler pseudoprime) to base a. As long as a is not a multiple of n (usually 2 ≤ a < n ), then if a and n are not coprime, n is definitely composite, as 1 < gcd ( a , n ) < n is a factor of n .

  7. Highly composite number - Wikipedia

    en.wikipedia.org/wiki/Highly_composite_number

    Highly composite numbers greater than 6 are also abundant numbers. One need only look at the three largest proper divisors of a particular highly composite number to ascertain this fact. It is false that all highly composite numbers are also Harshad numbers in base 10. The first highly composite number that is not a Harshad number is ...

  8. Mersenne conjectures - Wikipedia

    en.wikipedia.org/wiki/Mersenne_conjectures

    If p is an odd composite number, then 2 p − 1 and (2 p + 1)/3 are both composite. Therefore it is only necessary to test primes to verify the truth of the conjecture. Currently, there are nine known numbers for which all three conditions hold: 3, 5, 7, 13, 17, 19, 31, 61, 127 (sequence A107360 in the OEIS). Bateman et al. expected that no ...

  9. Table of divisors - Wikipedia

    en.wikipedia.org/wiki/Table_of_divisors

    a composite number has more than just 1 and itself as divisors; that is, d(n) > 2; a highly composite number has a number of positive divisors that is greater than any lesser number; that is, d(n) > d(m) for every positive integer m < n. Counterintuitively, the first two highly composite numbers are not composite numbers.