Search results
Results From The WOW.Com Content Network
A composite number with two prime factors is a semiprime or 2-almost prime (the factors need not be distinct, hence squares of primes are included). A composite number with three distinct prime factors is a sphenic number. In some applications, it is necessary to differentiate between composite numbers with an odd number of distinct prime ...
Even and odd numbers: An integer is even if it is a multiple of 2, and is odd otherwise. Prime number: A positive integer with exactly two positive divisors: itself and 1. The primes form an infinite sequence 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, ... Composite number: A positive integer that can be factored into a product of smaller positive ...
In mathematics, Lehmer's totient problem asks whether there is any composite number n such that Euler's totient function φ(n) divides n − 1. This is an unsolved problem. It is known that φ(n) = n − 1 if and only if n is prime. So for every prime number n, we have φ(n) = n − 1 and thus in particular φ(n) divides n − 1. D. H.
The nth composite number is bounded below by n. Because all even numbers greater than 2 and some odd numbers are composite, the presence of at least 2 composite odd numbers proves that the nth composite number will always be less than 2n for all n where 2n > the second odd composite number (15.)
If n is an odd composite integer that satisfies the above congruence, then n is called an Euler–Jacobi pseudoprime (or, more commonly, an Euler pseudoprime) to base a. As long as a is not a multiple of n (usually 2 ≤ a < n ), then if a and n are not coprime, n is definitely composite, as 1 < gcd ( a , n ) < n is a factor of n .
Highly composite numbers greater than 6 are also abundant numbers. One need only look at the three largest proper divisors of a particular highly composite number to ascertain this fact. It is false that all highly composite numbers are also Harshad numbers in base 10. The first highly composite number that is not a Harshad number is ...
If p is an odd composite number, then 2 p − 1 and (2 p + 1)/3 are both composite. Therefore it is only necessary to test primes to verify the truth of the conjecture. Currently, there are nine known numbers for which all three conditions hold: 3, 5, 7, 13, 17, 19, 31, 61, 127 (sequence A107360 in the OEIS). Bateman et al. expected that no ...
a composite number has more than just 1 and itself as divisors; that is, d(n) > 2; a highly composite number has a number of positive divisors that is greater than any lesser number; that is, d(n) > d(m) for every positive integer m < n. Counterintuitively, the first two highly composite numbers are not composite numbers.