When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Integral test for convergence - Wikipedia

    en.wikipedia.org/wiki/Integral_test_for_convergence

    The integral test applied to the harmonic series. Since the area under the curve y = 1/ x for x ∈ [1, ∞) is infinite, the total area of the rectangles must be infinite as well. Part of a series of articles about

  3. nth-term test - Wikipedia

    en.wikipedia.org/wiki/Nth-term_test

    If p ≤ 0, then the nth-term test identifies the series as divergent. If 0 < p ≤ 1, then the nth-term test is inconclusive, but the series is divergent by the integral test for convergence. If 1 < p, then the nth-term test is inconclusive, but the series is convergent by the integral test for convergence.

  4. Weierstrass M-test - Wikipedia

    en.wikipedia.org/wiki/Weierstrass_M-test

    In mathematics, the Weierstrass M-test is a test for determining whether an infinite series of functions converges uniformly and absolutely. It applies to series whose terms are bounded functions with real or complex values, and is analogous to the comparison test for determining the convergence of series of real or complex numbers.

  5. Convergence tests - Wikipedia

    en.wikipedia.org/wiki/Convergence_tests

    But if the integral diverges, then the series does so as well. In other words, the series a n {\displaystyle {a_{n}}} converges if and only if the integral converges. p -series test

  6. Direct comparison test - Wikipedia

    en.wikipedia.org/wiki/Direct_comparison_test

    In mathematics, the comparison test, sometimes called the direct comparison test to distinguish it from similar related tests (especially the limit comparison test), provides a way of deducing whether an infinite series or an improper integral converges or diverges by comparing the series or integral to one whose convergence properties are known.

  7. Gaussian integral - Wikipedia

    en.wikipedia.org/wiki/Gaussian_integral

    A different technique, which goes back to Laplace (1812), [3] is the following. Let = =. Since the limits on s as y → ±∞ depend on the sign of x, it simplifies the calculation to use the fact that e −x 2 is an even function, and, therefore, the integral over all real numbers is just twice the integral from zero to infinity.

  8. Play Hearts Online for Free - AOL.com

    www.aol.com/games/play/masque-publishing/hearts

    Enjoy a classic game of Hearts and watch out for the Queen of Spades!

  9. Schur test - Wikipedia

    en.wikipedia.org/wiki/Schur_test

    In mathematical analysis, the Schur test, named after German mathematician Issai Schur, is a bound on the operator norm of an integral operator in terms of its Schwartz kernel (see Schwartz kernel theorem). Here is one version. [1]