When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Direct numerical simulation - Wikipedia

    en.wikipedia.org/wiki/Direct_numerical_simulation

    Also, direct numerical simulations are useful in the development of turbulence models for practical applications, such as sub-grid scale models for large eddy simulation (LES) and models for methods that solve the Reynolds-averaged Navier–Stokes equations (RANS). This is done by means of "a priori" tests, in which the input data for the model ...

  3. Non-dimensionalization and scaling of the Navier–Stokes equations

    en.wikipedia.org/wiki/Non-dimensionalization_and...

    In fluid mechanics, non-dimensionalization of the Navier–Stokes equations is the conversion of the Navier–Stokes equation to a nondimensional form. This technique can ease the analysis of the problem at hand, and reduce the number of free parameters. Small or large sizes of certain dimensionless parameters indicate the importance of certain ...

  4. Siemens (unit) - Wikipedia

    en.wikipedia.org/wiki/Siemens_(unit)

    The siemens (symbol: S) is the unit of electric conductance, electric susceptance, and electric admittance in the International System of Units (SI). Conductance, susceptance, and admittance are the reciprocals of resistance, reactance, and impedance respectively; hence one siemens is equal to the reciprocal of one ohm (Ω −1) and is also referred to as the mho.

  5. Nondimensionalization - Wikipedia

    en.wikipedia.org/wiki/Nondimensionalization

    Nondimensionalization is the partial or full removal of physical dimensions from an equation involving physical quantities by a suitable substitution of variables.This technique can simplify and parameterize problems where measured units are involved.

  6. Derivation of the Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Derivation_of_the_Navier...

    This equation is called the mass continuity equation, or simply the continuity equation. This equation generally accompanies the Navier–Stokes equation. In the case of an incompressible fluid, ⁠ Dρ / Dt ⁠ = 0 (the density following the path of a fluid element is constant) and the equation reduces to:

  7. Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Navier–Stokes_equations

    The Navier–Stokes equations (/ n æ v ˈ j eɪ s t oʊ k s / nav-YAY STOHKS) are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades ...

  8. Natural units - Wikipedia

    en.wikipedia.org/wiki/Natural_units

    In physics, natural unit systems are measurement systems for which selected physical constants have been set to 1 through nondimensionalization of physical units.For example, the speed of light c may be set to 1, and it may then be omitted, equating mass and energy directly E = m rather than using c as a conversion factor in the typical mass–energy equivalence equation E = mc 2.

  9. Heaviside–Lorentz units - Wikipedia

    en.wikipedia.org/wiki/Heaviside–Lorentz_units

    These can be used to convert SI units to their corresponding Heaviside–Lorentz values, as detailed below. For example, SI charge is √ ε 0 L 3 M / T 2 . When one puts ε 0 = 8.854 pF/m , L = 1 cm , M = 1 g , and T = 1 s , this evaluates to 9.409 669 × 10 −11 C , the SI-equivalent of the Heaviside–Lorentz unit of charge.

  1. Related searches nanosiemens to ns conversion equation table

    nanosiemens to ns conversion equation table calculatortemperature conversion equation