When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Convergence of random variables - Wikipedia

    en.wikipedia.org/.../Convergence_of_random_variables

    In probability theory, there exist several different notions of convergence of sequences of random variables, including convergence in probability, convergence in distribution, and almost sure convergence. The different notions of convergence capture different properties about the sequence, with some notions of convergence being stronger than ...

  3. Proofs of convergence of random variables - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_convergence_of...

    Each of the probabilities on the right-hand side converge to zero as n → ∞ by definition of the convergence of {X n} and {Y n} in probability to X and Y respectively. Taking the limit we conclude that the left-hand side also converges to zero, and therefore the sequence {( X n , Y n )} converges in probability to {( X , Y )}.

  4. Big O in probability notation - Wikipedia

    en.wikipedia.org/wiki/Big_O_in_probability_notation

    The order in probability notation is used in probability theory and statistical theory in direct parallel to the big O notation that is standard in mathematics.Where the big O notation deals with the convergence of sequences or sets of ordinary numbers, the order in probability notation deals with convergence of sets of random variables, where convergence is in the sense of convergence in ...

  5. Convergence of measures - Wikipedia

    en.wikipedia.org/wiki/Convergence_of_measures

    For (,) a measurable space, a sequence μ n is said to converge setwise to a limit μ if = ()for every set .. Typical arrow notations are and .. For example, as a consequence of the Riemann–Lebesgue lemma, the sequence μ n of measures on the interval [−1, 1] given by μ n (dx) = (1 + sin(nx))dx converges setwise to Lebesgue measure, but it does not converge in total variation.

  6. Slutsky's theorem - Wikipedia

    en.wikipedia.org/wiki/Slutsky's_theorem

    In probability theory, Slutsky's theorem extends some properties of algebraic operations on convergent sequences of real numbers to sequences of random variables. [1] The theorem was named after Eugen Slutsky. [2] Slutsky's theorem is also attributed to Harald Cramér. [3]

  7. Uniform convergence in probability - Wikipedia

    en.wikipedia.org/wiki/Uniform_convergence_in...

    Uniform convergence in probability is a form of convergence in probability in statistical asymptotic theory and probability theory. It means that, under certain conditions, the empirical frequencies of all events in a certain event-family converge to their theoretical probabilities .

  8. Continuous mapping theorem - Wikipedia

    en.wikipedia.org/wiki/Continuous_mapping_theorem

    In probability theory, the continuous mapping theorem states that continuous functions preserve limits even if their arguments are sequences of random variables. A continuous function, in Heine's definition, is such a function that maps convergent sequences into convergent sequences: if x n → x then g(x n) → g(x).

  9. Large deviations theory - Wikipedia

    en.wikipedia.org/wiki/Large_deviations_theory

    The probability (>) decays exponentially as at a rate depending on x. This formula approximates any tail probability of the sample mean of i.i.d. variables and gives its convergence as the number of samples increases.