When.com Web Search

  1. Ad

    related to: what is a primitive number of terms in statistics calculator 1 12 3 3 2

Search results

  1. Results From The WOW.Com Content Network
  2. Dirichlet character - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_character

    In analytic number theory and related branches of ... (′ obviously satisfies 1-3). [12] The principal character is an identity: ... 2 is a primitive root mod 3. ...

  3. Primitive abundant number - Wikipedia

    en.wikipedia.org/wiki/Primitive_abundant_number

    The sum of its proper divisors is 1 + 2 + 4 + 5 + 10 = 22, so 20 is an abundant number. The sums of the proper divisors of 1, 2, 4, 5 and 10 are 0, 1, 3, 1 and 8 respectively, so each of these numbers is a deficient number. The first few primitive abundant numbers are: 20, 70, 88, 104, 272, 304, 368, 464, 550, 572 ... (sequence A071395 in the ...

  4. Conway polynomial (finite fields) - Wikipedia

    en.wikipedia.org/wiki/Conway_polynomial_(finite...

    The primitive elements of F 5 are 2 and 3. The two degree-1 polynomials with primitive roots are therefore x − 2 = x + 3 and x − 3 = x + 2, which correspond to the words 12 and 13, Since 12 is less than 13 in lexicographic ordering, C 5,1 (x) = x + 3. Degree 2. Since (5 21) / (5 11) = 6, compatibility requires that C 5,2 be chosen ...

  5. Practical number - Wikipedia

    en.wikipedia.org/wiki/Practical_number

    Demonstration of the practicality of the number 12. In number theory, a practical number or panarithmic number [1] is a positive integer such that all smaller positive integers can be represented as sums of distinct divisors of . For example, 12 is a practical number because all the numbers from 1 to 11 can be expressed as sums of its divisors ...

  6. Aliquot sequence - Wikipedia

    en.wikipedia.org/wiki/Aliquot_sequence

    The aliquot sequence starting with a positive integer k can be defined formally in terms of the sum-of-divisors function σ 1 or the aliquot sum function s in the following way: [1] = = = > = = = If the s n-1 = 0 condition is added, then the terms after 0 are all 0, and all aliquot sequences would be infinite, and we can conjecture that all aliquot sequences are convergent, the limit of these ...

  7. Undefined (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Undefined_(mathematics)

    [1] Attempting to assign or use an undefined value within a particular formal system, may produce contradictory or meaningless results within that system. In practice, mathematicians may use the term undefined to warn that a particular calculation or property can produce mathematically inconsistent results, and therefore, it should be avoided. [2]

  8. Carmichael's theorem - Wikipedia

    en.wikipedia.org/wiki/Carmichael's_theorem

    In number theory, Carmichael's theorem, named after the American mathematician R. D. Carmichael, states that, for any nondegenerate Lucas sequence of the first kind U n (P, Q) with relatively prime parameters P, Q and positive discriminant, an element U n with n ≠ 1, 2, 6 has at least one prime divisor that does not divide any earlier one except the 12th Fibonacci number F(12) = U 12 (1, − ...

  9. Primitive element (finite field) - Wikipedia

    en.wikipedia.org/wiki/Primitive_element_(finite...

    If q is a prime number, the elements of GF(q) can be identified with the integers modulo q. In this case, a primitive element is also called a primitive root modulo q. For example, 2 is a primitive element of the field GF(3) and GF(5), but not of GF(7) since it generates the cyclic subgroup {2, 4, 1} of order 3; however, 3 is a primitive ...