Search results
Results From The WOW.Com Content Network
It is particularly useful in machine learning for minimizing the cost or loss function. [1] Gradient descent should not be confused with local search algorithms, although both are iterative methods for optimization. Gradient descent is generally attributed to Augustin-Louis Cauchy, who first suggested it in 1847. [2]
Stochastic gradient descent competes with the L-BFGS algorithm, [citation needed] which is also widely used. Stochastic gradient descent has been used since at least 1960 for training linear regression models, originally under the name ADALINE. [25] Another stochastic gradient descent algorithm is the least mean squares (LMS) adaptive filter.
[2] In setting a learning rate, there is a trade-off between the rate of convergence and overshooting. While the descent direction is usually determined from the gradient of the loss function, the learning rate determines how big a step is taken in that direction. A too high learning rate will make the learning jump over minima but a too low ...
Gradient descent took a considerable amount of time to reach acceptance. Some early objections were: there were no guarantees that gradient descent could reach a global minimum, only local minimum; neurons were "known" by physiologists as making discrete signals (0/1), not continuous ones, and with discrete signals, there is no gradient to take.
The reparameterization trick (aka "reparameterization gradient estimator") is a technique used in statistical machine learning, particularly in variational inference, variational autoencoders, and stochastic optimization.
The geometric interpretation of Newton's method is that at each iteration, it amounts to the fitting of a parabola to the graph of () at the trial value , having the same slope and curvature as the graph at that point, and then proceeding to the maximum or minimum of that parabola (in higher dimensions, this may also be a saddle point), see below.
Gradient descent methods are first-order, iterative, optimization methods. Each iteration updates an approximate solution to the optimization problem by taking a step in the direction of the negative of the gradient of the objective function.
1.2 Definition of symbols. 2 Idea. 3 Derivation. 4 Simplifications. ... This is based on the gradient descent algorithm. The algorithm starts by assuming small ...