Search results
Results From The WOW.Com Content Network
Integer overflow can be demonstrated through an odometer overflowing, a mechanical version of the phenomenon. All digits are set to the maximum 9 and the next increment of the white digit causes a cascade of carry-over additions setting all digits to 0, but there is no higher digit (1,000,000s digit) to change to a 1, so the counter resets to zero.
In computing, quadruple precision (or quad precision) is a binary floating-point–based computer number format that occupies 16 bytes (128 bits) with precision at least twice the 53-bit double precision. This 128-bit quadruple precision is designed not only for applications requiring results in higher than double precision, [1] but also, as a ...
The existing 64- and 128-bit formats follow this rule, but the 16- and 32-bit formats have more exponent bits (5 and 8 respectively) than this formula would provide (3 and 7 respectively). As with IEEE 754-1985, the biased-exponent field is filled with all 1 bits to indicate either infinity (trailing significand field = 0) or a NaN (trailing ...
An example, suppose we add 127 and 127 using 8-bit registers. 127+127 is 254, but using 8-bit arithmetic the result would be 1111 1110 binary, which is the two's complement encoding of −2, a negative number. A negative sum of positive operands (or vice versa) is an overflow.
Both formats break a number down into a sign bit s, an exponent q (between q min and q max), and a p-digit significand c (between 0 and 10 p −1). The value encoded is (−1) s ×10 q × c . In both formats the range of possible values is identical, but they differ in how the significand c is represented.
The binary interchange formats have the "half precision" (16-bit storage format) and "quad precision" (128-bit format) added, together with generalized formulae for some wider formats; the basic formats have 32-bit, 64-bit, and 128-bit encodings. Three new decimal formats are described, matching the lengths of the 32–128-bit binary formats.
The 24-bit significand will stop at position 23, shown as the underlined bit 0 above. The next bit, at position 24, is called the round bit or rounding bit. It is used to round the 33-bit approximation to the nearest 24-bit number (there are specific rules for halfway values, which is not the case here).
Arbitrary-precision arithmetic can also be used to avoid overflow, which is an inherent limitation of fixed-precision arithmetic. Similar to an automobile's odometer display which may change from 99999 to 00000, a fixed-precision integer may exhibit wraparound if numbers grow too large to represent at the fixed level of precision.