Search results
Results From The WOW.Com Content Network
The light from the lamp (1.) functions as a detectable change in the plant's environment. As a result, the plant exhibits a reaction of phototropism--directional growth (2.) toward the light stimulus. Auxin distribution controls phototropism. 1. Sunlight strikes the plant from directly above. Auxin (pink dots) encourages growth straight up. 2 ...
An action spectrum is a graph of the rate of biological effectiveness plotted against wavelength of light. [1] It is related to absorption spectrum in many systems. Mathematically, it describes the inverse quantity of light required to evoke a constant response.
This mismatch between absorption spectra and photochemical action plots has by now been observed in a wide array of photoreactive systems. [41] [42] [43] A prominent example is the photoinduced [2+2] cycloaddition of the stilbene derivative, styrypyrene, which exhibited an 80 nm discrepancy between the action plot and absorption spectrum. [33]
Plant perception is the ability of plants to sense and respond to the environment by adjusting their morphology and physiology. [1] Botanical research has revealed that plants are capable of reacting to a broad range of stimuli, including chemicals, gravity, light, moisture, infections, temperature, oxygen and carbon dioxide concentrations, parasite infestation, disease, physical disruption ...
Bottom: PAR action spectrum (oxygen evolution per incident photon) of an isolated chloroplast. Chlorophyll , the most abundant plant pigment, is most efficient in capturing red and blue light. Accessory pigments such as carotenes and xanthophylls harvest some green light and pass it on to the photosynthetic process, but enough of the green ...
Terrestrial and aquatic phototrophs: plants grow on a fallen log floating in algae-rich water Phototrophs (from Ancient Greek φῶς , φωτός ( phôs, phōtós ) 'light' and τροφή ( trophḗ ) 'nourishment') are organisms that carry out photon capture to produce complex organic compounds (e.g. carbohydrates ) and acquire energy.
For example, in green plants, the action spectrum resembles the absorption spectrum for chlorophylls and carotenoids with absorption peaks in violet-blue and red light. In red algae , the action spectrum is blue-green light, which allows these algae to use the blue end of the spectrum to grow in the deeper waters that filter out the longer ...
Typically, plants are responsive to wavelengths of light in the blue, red and far-red regions of the spectrum through the action of several different photosensory systems. The photoreceptors for red and far-red wavelengths are known as phytochromes. There are at least 5 members of the phytochrome family of photoreceptors.