Search results
Results From The WOW.Com Content Network
If the domain X is a metric space, then f is said to have a local (or relative) maximum point at the point x ∗, if there exists some ε > 0 such that f(x ∗) ≥ f(x) for all x in X within distance ε of x ∗. Similarly, the function has a local minimum point at x ∗, if f(x ∗) ≤ f(x) for all x in X within distance ε of x ∗.
Perhaps the best-known example of the idea of locality lies in the concept of local minimum (or local maximum), which is a point in a function whose functional value is the smallest (resp., largest) within an immediate neighborhood of points. [1]
A saddle point (in red) on the graph of z = x 2 − y 2 (hyperbolic paraboloid). In mathematics, a saddle point or minimax point [1] is a point on the surface of the graph of a function where the slopes (derivatives) in orthogonal directions are all zero (a critical point), but which is not a local extremum of the function. [2]
The graph of a function on its own does not determine the codomain. It is common [3] to use both terms function and graph of a function since even if considered the same object, they indicate viewing it from a different perspective. Graph of the function () = over the interval [−2,+3]. Also shown are the two real roots and the local minimum ...
The minimum point becomes a new working point, and we proceed to the next iteration: [1]: sec.5 Newton's method is a special case of a curve-fitting method, in which the curve is a degree-two polynomial, constructed using the first and second derivatives of f .
The notions of maximal and minimal elements are weaker than those of greatest element and least element which are also known, respectively, as maximum and minimum. The maximum of a subset S {\displaystyle S} of a preordered set is an element of S {\displaystyle S} which is greater than or equal to any other element of S , {\displaystyle S,} and ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
A critical point (where the function is differentiable) may be either a local maximum, a local minimum or a saddle point. If the function is at least twice continuously differentiable the different cases may be distinguished by considering the eigenvalues of the Hessian matrix of second derivatives.