Search results
Results From The WOW.Com Content Network
In classical mechanics, the gravitational potential is a scalar potential associating with each point in space the work (energy transferred) per unit mass that would be needed to move an object to that point from a fixed reference point in the conservative gravitational field.
The gravitational potential energy is the potential energy an object has because it is within a gravitational field. The magnitude & direction of gravitational force experienced by a point mass , due to the presence of another point mass at a distance , is given by Newton's law of gravitation. [2]
The potential has units of energy per mass, e.g., J/kg in the MKS system. By convention, it is always negative where it is defined, and as x tends to infinity, it approaches zero. The gravitational field, and thus the acceleration of a small body in the space around the massive object, is the negative gradient of the gravitational potential ...
The arrows indicate the downhill gradients of the potential around the five Lagrange points, toward them (red) and away from them (blue). Counterintuitively, the L 4 and L 5 points are the high points of the potential. At the points themselves these forces are balanced. An example of a spacecraft at Sun-Earth L2 WMAP · Earth
The factors that affect an object's gravitational potential energy are its height relative to some reference point, its mass, and the strength of the gravitational field it is in. Thus, a book lying on a table has less gravitational potential energy than the same book on top of a taller cupboard and less gravitational potential energy than a ...
The gravitational field g (also called gravitational acceleration) is a vector field – a vector at each point of space (and time).It is defined so that the gravitational force experienced by a particle is equal to the mass of the particle multiplied by the gravitational field at that point.
At latitude 50 deg the off-set between the gravitational force (red line in the figure) and the local vertical (green line in the figure) is in fact 0.098 deg. For a mass point (atmosphere) in motion the centrifugal force no more matches the gravitational and the vector sum is not exactly orthogonal to the Earth surface.
As in the case of the Liénard–Wiechert potentials for electromagnetic effects and waves, the static potentials from a moving gravitational mass (i.e., its simple gravitational field, also known as gravitostatic field) are "updated," so that they point to the mass's actual position at constant velocity, with no retardation effects. This ...