Search results
Results From The WOW.Com Content Network
The gravitational potential (V) at a location is the gravitational potential energy (U) at that location per unit mass: =, where m is the mass of the object. Potential energy is equal (in magnitude, but negative) to the work done by the gravitational field moving a body to its given position in space from infinity.
The gravitational potential energy is the potential energy an object has because it is within a gravitational field. The magnitude of the force between a point mass, M {\displaystyle M} , and another point mass, m {\displaystyle m} , is given by Newton's law of gravitation : [ 3 ] F = G M m r 2 {\displaystyle F={\frac {GMm}{r^{2}}}}
Gravitational energy is the potential energy associated with gravitational force, as work is required to elevate objects against Earth's gravity. The potential energy due to elevated positions is called gravitational potential energy, and is evidenced by water in an elevated reservoir or kept behind a dam.
The function =, is the gravitational potential function, also known as gravitational potential energy. The negative sign follows the convention that work is gained from a loss of potential energy. The negative sign follows the convention that work is gained from a loss of potential energy.
Conversely, as two massive objects move towards each other, the motion accelerates under gravity causing an increase in the (positive) kinetic energy of the system and, in order to conserve the total sum of energy, the increase of the same amount in the gravitational potential energy of the object is treated as negative. [1]
The potential energy, U, depends on the position of an object subjected to gravity or some other conservative force. The gravitational potential energy of an object is equal to the weight W of the object multiplied by the height h of the object's center of gravity relative to an arbitrary datum: =
The potential has units of energy per mass, e.g., J/kg in the MKS system. By convention, it is always negative where it is defined, and as x tends to infinity, it approaches zero. The gravitational field, and thus the acceleration of a small body in the space around the massive object, is the negative gradient of the gravitational potential ...
In astrophysics, Chandrasekhar potential energy tensor provides the gravitational potential of a body due to its own gravity created by the distribution of matter across the body, named after the Indian American astrophysicist Subrahmanyan Chandrasekhar.