Ads
related to: atm calculator chemistry
Search results
Results From The WOW.Com Content Network
The standard atmosphere was originally defined as the pressure exerted by a 760 mm column of mercury at 0 °C (32 °F) and standard gravity (g n = 9.806 65 m/s 2). [2] It was used as a reference condition for physical and chemical properties, and the definition of the centigrade temperature scale set 100 °C as the boiling point of water at this pressure.
Free Steam Tables Online calculator based on IAPWS-IF97; FACT-Web programs Various on-line tools for obtaining thermodynamic data and making equilibrium calculations. Mol-Instincts A chemical database based on Quantum Mechanics and QSPR, providing thermodynamic properties for millions of compounds.
In chemistry, IUPAC changed its definition of standard temperature and pressure in 1982: [1] [2] Until 1982, STP was defined as a temperature of 273.15 K (0 °C, 32 °F) and an absolute pressure of exactly 1 atm (101.325 kPa).
This disparity is not a significant departure from accuracy, and USSA1976 uses this value of R ∗ for all the calculations of the standard atmosphere. When using the ISO value of R , the calculated pressure increases by only 0.62 pascal at 11 kilometres (the equivalent of a difference of only 17.4 centimetres or 6.8 inches) and 0.292 Pa at 20 ...
Atmospheric pressure, also known as air pressure or barometric pressure (after the barometer), is the pressure within the atmosphere of Earth.The standard atmosphere (symbol: atm) is a unit of pressure defined as 101,325 Pa (1,013.25 hPa), which is equivalent to 1,013.25 millibars, [1] 760 mm Hg, 29.9212 inches Hg, or 14.696 psi. [2]
How much gas is present could be specified by giving the mass instead of the chemical amount of gas. Therefore, an alternative form of the ideal gas law may be useful. The chemical amount, n (in moles), is equal to total mass of the gas (m) (in kilograms) divided by the molar mass, M (in kilograms per mole): =.
For most solids this pressure is very low, but some notable exceptions are naphthalene, dry ice (the vapor pressure of dry ice is 5.73 MPa (831 psi, 56.5 atm) at 20 °C, which causes most sealed containers to rupture), and ice. All solid materials have a vapor pressure.
The ideal gas equation can be rearranged to give an expression for the molar volume of an ideal gas: = = Hence, for a given temperature and pressure, the molar volume is the same for all ideal gases and is based on the gas constant: R = 8.314 462 618 153 24 m 3 ⋅Pa⋅K −1 ⋅mol −1, or about 8.205 736 608 095 96 × 10 −5 m 3 ⋅atm⋅K ...