When.com Web Search

  1. Ads

    related to: circle equation worksheet pdf with answer line up 1 2 10 as a decimal

Search results

  1. Results From The WOW.Com Content Network
  2. Pi - Wikipedia

    en.wikipedia.org/wiki/Pi

    t. e. The number π (/ paɪ /; spelled out as " pi ") is a mathematical constant that is the ratio of a circle 's circumference to its diameter, approximately equal to 3.14159. The number π appears in many formulae across mathematics and physics.

  3. Circle - Wikipedia

    en.wikipedia.org/wiki/Circle

    C = 2πR. A circle is a shape consisting of all points in a plane that are at a given distance from a given point, the centre. The distance between any point of the circle and the centre is called the radius. The length of a line segment connecting two points on the circle and passing through the centre is called the diameter.

  4. Unit circle - Wikipedia

    en.wikipedia.org/wiki/Unit_circle

    Thus, by the Pythagorean theorem, x and y satisfy the equation + = Since x 2 = (−x) 2 for all x, and since the reflection of any point on the unit circle about the x - or y-axis is also on the unit circle, the above equation holds for all points (x, y) on the unit circle, not only those in the first quadrant.

  5. Power of a point - Wikipedia

    en.wikipedia.org/wiki/Power_of_a_point

    In elementary plane geometry, the power of a point is a real number that reflects the relative distance of a given point from a given circle. It was introduced by Jakob Steiner in 1826. [1] Specifically, the power of a point with respect to a circle with center and radius is defined by. if is inside the circle, then .

  6. List of formulae involving π - Wikipedia

    en.wikipedia.org/wiki/List_of_formulae_involving_π

    mathematical constant π. 3.14159 26535 89793 23846 26433... The following is a list of significant formulae involving the mathematical constant π. Many of these formulae can be found in the article Pi, or the article Approximations of π.

  7. Intersecting chords theorem - Wikipedia

    en.wikipedia.org/wiki/Intersecting_chords_theorem

    In Euclidean geometry, the intersecting chords theorem, or just the chord theorem, is a statement that describes a relation of the four line segments created by two intersecting chords within a circle. It states that the products of the lengths of the line segments on each chord are equal. It is Proposition 35 of Book 3 of Euclid 's Elements.