Search results
Results From The WOW.Com Content Network
In geometry, tangent circles (also known as kissing circles) are circles in a common plane that intersect in a single point. There are two types of tangency : internal and external. Many problems and constructions in geometry are related to tangent circles; such problems often have real-life applications such as trilateration and maximizing the ...
Circle-related theory. Apollonius' problem – Geometry problem about finding touching circles Limiting cases of Apollonius' problem – Construct all the circles that are tangent to three given circles; Belt problem – Mathematics problem; Benz plane – Geometrical structure
Many of these problems can be related to real-life packaging, storage and transportation issues. Each packing problem has a dual covering problem, which asks how many of the same objects are required to completely cover every region of the container, where objects are allowed to overlap. In a bin packing problem, people are given:
A compact binary circle packing with the most similarly sized circles possible. [7] It is also the densest possible packing of discs with this size ratio (ratio of 0.6375559772 with packing fraction (area density) of 0.910683). [8] There are also a range of problems which permit the sizes of the circles to be non-uniform.
We don't quite remember the first time we had dark circles. And yet, one day, they took up residence underneath our eyes—uninvited, mind you—and just never left. Although there are several ...
The most famous of these problems, squaring the circle, otherwise known as the quadrature of the circle, involves constructing a square with the same area as a given circle using only straightedge and compass. Squaring the circle has been proved impossible, as it involves generating a transcendental number, that is, √ π.
Each circle is labeled by an integer i, its position in the sequence; it has radius ρ i and curvature ρ −i. When the four radii of the circles in Descartes' theorem are assumed to be in a geometric progression with ratio , the curvatures are also in the same progression (in reverse). Plugging this ratio into the theorem gives the equation
This problem is known as the primitive circle problem, as it involves searching for primitive solutions to the original circle problem. [9] It can be intuitively understood as the question of how many trees within a distance of r are visible in the Euclid's orchard , standing in the origin.