When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Invertible matrix - Wikipedia

    en.wikipedia.org/wiki/Invertible_matrix

    In linear algebra, an invertible matrix is a square matrix which has an inverse. In other words, if some other matrix is multiplied by the invertible matrix, the result can be multiplied by an inverse to undo the operation. An invertible matrix multiplied by its inverse yields the identity matrix. Invertible matrices are the same size as their ...

  3. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    If a matrix A can be eigendecomposed and if none of its eigenvalues are zero, then A is invertible and its inverse is given by = If is a symmetric matrix, since is formed from the eigenvectors of , is guaranteed to be an orthogonal matrix, therefore =.

  4. List of named matrices - Wikipedia

    en.wikipedia.org/wiki/List_of_named_matrices

    A square matrix that is not invertible. Unimodular matrix: An invertible matrix with entries in the integers (integer matrix) Necessarily the determinant is +1 or −1. Unipotent matrix: A square matrix with all eigenvalues equal to 1. Equivalently, A − I is nilpotent. See also unipotent group. Unitary matrix: A square matrix whose inverse is ...

  5. Matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Matrix_(mathematics)

    A square matrix A is called invertible or non-singular if there exists a matrix B such that [28] [29] = =, where I n is the n×n identity matrix with 1s on the main diagonal and 0s elsewhere. If B exists, it is unique and is called the inverse matrix of A, denoted A −1.

  6. Inverse element - Wikipedia

    en.wikipedia.org/wiki/Inverse_element

    An invertible matrix is an invertible element under matrix multiplication. A matrix over a commutative ring R is invertible if and only if its determinant is a unit in R (that is, is invertible in R. In this case, its inverse matrix can be computed with Cramer's rule. If R is a field, the determinant is invertible if and only if it is not zero ...

  7. General linear group - Wikipedia

    en.wikipedia.org/wiki/General_linear_group

    In mathematics, the general linear group of degree n is the set of n×n invertible matrices, together with the operation of ordinary matrix multiplication.This forms a group, because the product of two invertible matrices is again invertible, and the inverse of an invertible matrix is invertible, with the identity matrix as the identity element of the group.

  8. Matrix decomposition - Wikipedia

    en.wikipedia.org/wiki/Matrix_decomposition

    If is invertible, then is unique. Comment: Since any Hermitian matrix admits a spectral decomposition with a unitary matrix, can be written as =. Since is positive semidefinite, all elements in are non-negative.

  9. Unimodular matrix - Wikipedia

    en.wikipedia.org/wiki/Unimodular_matrix

    In mathematics, a unimodular matrix M is a square integer matrix having determinant +1 or −1. Equivalently, it is an integer matrix that is invertible over the integers : there is an integer matrix N that is its inverse (these are equivalent under Cramer's rule ).