When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Multicollinearity - Wikipedia

    en.wikipedia.org/wiki/Multicollinearity

    Multicollinearity. In statistics, multicollinearity or collinearity is a situation where the predictors in a regression model are linearly dependent. Perfect multicollinearity refers to a situation where the predictive variables have an exact linear relationship. When there is perfect collinearity, the design matrix has less than full rank, and ...

  3. Collinearity - Wikipedia

    en.wikipedia.org/wiki/Collinearity

    In geometry, collinearity of a set of points is the property of their lying on a single line. [1] A set of points with this property is said to be collinear (sometimes spelled as colinear[2]). In greater generality, the term has been used for aligned objects, that is, things being "in a line" or "in a row".

  4. Variance inflation factor - Wikipedia

    en.wikipedia.org/wiki/Variance_inflation_factor

    Variance inflation factor. In statistics, the variance inflation factor (VIF) is the ratio (quotient) of the variance of a parameter estimate when fitting a full model that includes other parameters to the variance of the parameter estimate if the model is fit with only the parameter on its own. [1] The VIF provides an index that measures how ...

  5. Homoscedasticity and heteroscedasticity - Wikipedia

    en.wikipedia.org/wiki/Homoscedasticity_and...

    Plot with random data showing homoscedasticity: at each value of x, the y -value of the dots has about the same variance. Plot with random data showing heteroscedasticity: The variance of the y -values of the dots increases with increasing values of x. In statistics, a sequence of random variables is homoscedastic (/ ˌhoʊmoʊskəˈdæstɪk ...

  6. Analysis of covariance - Wikipedia

    en.wikipedia.org/wiki/Analysis_of_covariance

    Analysis of covariance (ANCOVA) is a general linear model that blends ANOVA and regression. ANCOVA evaluates whether the means of a dependent variable (DV) are equal across levels of one or more categorical independent variables (IV) and across one or more continuous variables. For example, the categorical variable (s) might describe treatment ...

  7. Principal component regression - Wikipedia

    en.wikipedia.org/wiki/Principal_component_regression

    Mathematics portal. v. t. e. In statistics, principal component regression (PCR) is a regression analysis technique that is based on principal component analysis (PCA). PCR is a form of reduced rank regression [1]. More specifically, PCR is used for estimating the unknown regression coefficients in a standard linear regression model.

  8. Linear regression - Wikipedia

    en.wikipedia.org/wiki/Linear_regression

    e. In statistics, linear regression is a model that estimates the linear relationship between a scalar response (dependent variable) and one or more explanatory variables (regressor or independent variable). A model with exactly one explanatory variable is a simple linear regression; a model with two or more explanatory variables is a multiple ...

  9. One-hot - Wikipedia

    en.wikipedia.org/wiki/One-hot

    One-hot. In digital circuits and machine learning, a one-hot is a group of bits among which the legal combinations of values are only those with a single high (1) bit and all the others low (0). [1] A similar implementation in which all bits are '1' except one '0' is sometimes called one-cold. [2] In statistics, dummy variables represent a ...