Search results
Results From The WOW.Com Content Network
The rate of heat flow is the amount of heat that is transferred per unit of time in some material, usually measured in watts (joules per second). Heat is the flow of thermal energy driven by thermal non-equilibrium, so the term 'heat flow' is a redundancy (i.e. a pleonasm). Heat must not be confused with stored thermal energy, and moving a hot ...
In physics and engineering, heat flux or thermal flux, sometimes also referred to as heat flux density[1], heat-flow density or heat-flow rate intensity, is a flow of energy per unit area per unit time. Its SI units are watts per square metre (W/m 2). It has both a direction and a magnitude, and so it is a vector quantity.
In thermodynamics, the heat transfer coefficient or film coefficient, or film effectiveness, is the proportionality constant between the heat flux and the thermodynamic driving force for the flow of heat (i.e., the temperature difference, ΔT ). It is used in calculating the heat transfer, typically by convection or phase transition between a ...
The time rate of heat flow into a region V is given by a time-dependent quantity q t (V). We assume q has a density Q, so that () = (,) Heat flow is a time-dependent vector function H(x) characterized as follows: the time rate of heat flowing through an infinitesimal surface element with area dS and with unit normal vector n is () ().
Thermal conduction (power) is the heat per unit time transferred some distance ℓ between the two temperatures. κ is the thermal conductivity of the material. A is the cross-sectional area of the object. ΔT is the difference in temperature from one side to the other. ℓ is the length of the path the heat has to be transferred.
Nusselt number. In thermal fluid dynamics, the Nusselt number (Nu, after Wilhelm Nusselt [1]: 336 ) is the ratio of total heat transfer to conductive heat transfer at a boundary in a fluid. Total heat transfer combines conduction and convection. Convection includes both advection (fluid motion) and diffusion (conduction).
An example of steady state conduction is the heat flow through walls of a warm house on a cold day—inside the house is maintained at a high temperature and, outside, the temperature stays low, so the transfer of heat per unit time stays near a constant rate determined by the insulation in the wall and the spatial distribution of temperature ...
The Earth core's heat flow—heat leaving the core and flowing into the overlying mantle—is thought to be due to primordial heat, and is estimated at 5–15 TW. [23] Estimates of mantle primordial heat loss range between 7 and 15 TW, which is calculated as the remainder of heat after removal of core heat flow and bulk-Earth radiogenic heat ...