Ads
related to: legendre equation frobenius method examples math answers free
Search results
Results From The WOW.Com Content Network
In mathematics, the method of Frobenius, named after Ferdinand Georg Frobenius, is a way to find an infinite series solution for a linear second-order ordinary differential equation of the form with and . in the vicinity of the regular singular point . One can divide by to obtain a differential equation of the form which will not be solvable ...
Legendre's equation. In mathematics, Legendre's equation is the Diophantine equation. The equation is named for Adrien-Marie Legendre who proved in 1785 that it is solvable in integers x, y, z, not all zero, if and only if − bc, − ca and − ab are quadratic residues modulo a, b and c, respectively, where a, b, c are nonzero, square-free ...
This is a method that uses the series solution for a differential equation, where we assume the solution takes the form of a series. This is usually the method we use for complicated ordinary differential equations. The solution of the hypergeometric differential equation is very important. For instance, Legendre's differential equation can be ...
Legendre polynomials occur in the solution of Laplace's equation of the static potential, ∇ 2 Φ(x) = 0, in a charge-free region of space, using the method of separation of variables, where the boundary conditions have axial symmetry (no dependence on an azimuthal angle).
In mathematics, the Gaussian or ordinary hypergeometric function 2F1 (a, b; c; z) is a special function represented by the hypergeometric series, that includes many other special functions as specific or limiting cases. It is a solution of a second-order linear ordinary differential equation (ODE).
The general Legendre equation reads ″ ′ + [(+)] =, where the numbers λ and μ may be complex, and are called the degree and order of the relevant function, respectively. . The polynomial solutions when λ is an integer (denoted n), and μ = 0 are the Legendre polynomials P n; and when λ is an integer (denoted n), and μ = m is also an integer with | m | < n are the associated Legendre ...
In many occasions in physics, associated Legendre polynomials in terms of angles occur where spherical symmetry is involved. The colatitude angle in spherical coordinates is the angle used above. The longitude angle, , appears in a multiplying factor. Together, they make a set of functions called spherical harmonics.
Frobenius formula. In mathematics, specifically in representation theory, the Frobenius formula, introduced by G. Frobenius, computes the characters of irreducible representations of the symmetric group Sn. Among the other applications, the formula can be used to derive the hook length formula.