When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Coplanarity - Wikipedia

    en.wikipedia.org/wiki/Coplanarity

    Coplanarity. In geometry, a set of points in space are coplanar if there exists a geometric plane that contains them all. For example, three points are always coplanar, and if the points are distinct and non-collinear, the plane they determine is unique. However, a set of four or more distinct points will, in general, not lie in a single plane.

  3. Adaptive coordinate descent - Wikipedia

    en.wikipedia.org/wiki/Adaptive_coordinate_descent

    First approaches to optimization using adaptive coordinate system were proposed already in the 1960s (see, e.g., Rosenbrock's method).PRincipal Axis (PRAXIS) algorithm, also referred to as Brent's algorithm, is a derivative-free algorithm which assumes quadratic form of the optimized function and repeatedly updates a set of conjugate search directions. [3]

  4. Euclidean distance matrix - Wikipedia

    en.wikipedia.org/wiki/Euclidean_distance_matrix

    Euclidean distance matrix. In mathematics, a Euclidean distance matrix is an n×n matrix representing the spacing of a set of n points in Euclidean space. For points in k -dimensional space ℝk, the elements of their Euclidean distance matrix A are given by squares of distances between them. That is. where denotes the Euclidean norm on ℝk.

  5. Kabsch algorithm - Wikipedia

    en.wikipedia.org/wiki/Kabsch_algorithm

    Let P and Q be two sets, each containing N points in .We want to find the transformation from Q to P.For simplicity, we will consider the three-dimensional case (=).The sets P and Q can each be represented by N × 3 matrices with the first row containing the coordinates of the first point, the second row containing the coordinates of the second point, and so on, as shown in this matrix:

  6. Lagrangian mechanics - Wikipedia

    en.wikipedia.org/wiki/Lagrangian_mechanics

    Given a set of generalized coordinates q, if we change these variables to a new set of generalized coordinates Q according to a point transformation Q = Q(q, t) which is invertible as q = q(Q, t), the new Lagrangian L′ is a function of the new coordinates ′ (, ˙,) = ((,), ˙ (, ˙,),), and by the chain rule for partial differentiation ...

  7. CORDIC - Wikipedia

    en.wikipedia.org/wiki/CORDIC

    CORDIC (coordinate rotation digital computer), Volder's algorithm, Digit-by-digit method, Circular CORDIC (Jack E. Volder), [1] [2] Linear CORDIC, Hyperbolic CORDIC (John Stephen Walther), [3] [4] and Generalized Hyperbolic CORDIC (GH CORDIC) (Yuanyong Luo et al.), [5] [6] is a simple and efficient algorithm to calculate trigonometric functions, hyperbolic functions, square roots ...

  8. Transformation matrix - Wikipedia

    en.wikipedia.org/wiki/Transformation_matrix

    Transformation matrix. In linear algebra, linear transformations can be represented by matrices. If is a linear transformation mapping to and is a column vector with entries, then for some matrix , called the transformation matrix of . [citation needed] Note that has rows and columns, whereas the transformation is from to .

  9. Coordinate-free - Wikipedia

    en.wikipedia.org/wiki/Coordinate-free

    Coordinate-free treatments generally allow for simpler systems of equations and inherently constrain certain types of inconsistency, allowing greater mathematical elegance at the cost of some abstraction from the detailed formulae needed to evaluate these equations within a particular system of coordinates.