Search results
Results From The WOW.Com Content Network
A number of electrical laws apply to all linear resistive networks. These include: Kirchhoff's current law: The sum of all currents entering a node is equal to the sum of all currents leaving the node. Kirchhoff's voltage law: The directed sum of the electrical potential differences around a loop must be zero.
The electrical resistance of a uniform conductor is given in terms of resistivity by: [40] = where ℓ is the length of the conductor in SI units of meters, a is the cross-sectional area (for a round wire a = πr 2 if r is radius) in units of meters squared, and ρ is the resistivity in units of ohm·meters.
For resistive networks, this will always be a simple real number or an expression which boils down to a real number. Resistive networks are represented by a system of simultaneous algebraic equations. However, in the general case of linear networks, the network is represented by a system of simultaneous linear differential equations.
Also called chordal or DC resistance This corresponds to the usual definition of resistance; the voltage divided by the current R s t a t i c = V I. {\displaystyle R_{\mathrm {static} }={V \over I}.} It is the slope of the line (chord) from the origin through the point on the curve. Static resistance determines the power dissipation in an electrical component. Points on the current–voltage ...
Electrical resistivity (also called volume resistivity or specific electrical resistance) is a fundamental specific property of a material that measures its electrical resistance or how strongly it resists electric current. A low resistivity indicates a material that readily allows electric current.
The current entering any junction is equal to the current leaving that junction. i 2 + i 3 = i 1 + i 4. This law, also called Kirchhoff's first law, or Kirchhoff's junction rule, states that, for any node (junction) in an electrical circuit, the sum of currents flowing into that node is equal to the sum of currents flowing out of that node; or equivalently:
As originally stated in terms of direct-current resistive circuits only, Thévenin's theorem states that "Any linear electrical network containing only voltage sources, current sources and resistances can be replaced at terminals A–B by an equivalent combination of a voltage source V th in a series connection with a resistance R th."
An I–V curve which is a straight line through the origin with positive slope represents a linear or ohmic resistor, the most common type of resistance encountered in circuits. It obeys Ohm's law; the current is proportional to the applied voltage over a wide range. Its resistance, equal to the reciprocal of the slope of the line, is constant ...