Search results
Results From The WOW.Com Content Network
Reciprocity in electrical networks is a property of a circuit that relates voltages and currents at two points. The reciprocity theorem states that the current at one point in a circuit due to a voltage at a second point is the same as the current at the second point due to the same voltage at the first.
In mathematics, a harmonic progression (or harmonic sequence) is a progression formed by taking the reciprocals of an arithmetic progression, which is also known as an arithmetic sequence. Equivalently, a sequence is a harmonic progression when each term is the harmonic mean of the neighboring terms.
The harmonic number with = ⌊ ⌋ (red line) with its asymptotic limit + (blue line) where is the Euler–Mascheroni constant.. In mathematics, the n-th harmonic number is the sum of the reciprocals of the first n natural numbers: [1] = + + + + = =.
Reciprocal polynomials have several connections with their original polynomials, including: deg p = deg p ∗ if is not 0.; p(x) = x n p ∗ (x −1). [2]α is a root of a polynomial p if and only if α −1 is a root of p ∗.
In mathematics, a reciprocity law is a generalization of the law of quadratic reciprocity to arbitrary monic irreducible polynomials () with integer coefficients. Recall that first reciprocity law, quadratic reciprocity, determines when an irreducible polynomial () = + + splits into linear terms when reduced mod .
The law of reciprocal proportions, also called law of equivalent proportions or law of permanent ratios, is one of the basic laws of stoichiometry. It relates the proportions in which elements combine across a number of different elements. It was first formulated by Jeremias Richter in 1791. [1] A simple statement of the law is: [2]
For the multiplicative inverse of a real number, divide 1 by the number. For example, the reciprocal of 5 is one fifth (1/5 or 0.2), and the reciprocal of 0.25 is 1 divided by 0.25, or 4. The reciprocal function, the function f(x) that maps x to 1/x, is one of the simplest examples of a function which is its own inverse (an involution).
The sum of the reciprocals of the powerful numbers is close to 1.9436 . [4] The reciprocals of the factorials sum to the transcendental number e (one of two constants called "Euler's number"). The sum of the reciprocals of the square numbers (the Basel problem) is the transcendental number π 2 / 6 , or ζ(2) where ζ is the Riemann zeta ...