Ads
related to: reverse biased diode
Search results
Results From The WOW.Com Content Network
Under zero- or reverse-bias (the "off" state), a PIN diode has a low capacitance. The low capacitance will not pass much of an RF signal. Under a forward bias of 1 mA (the "on" state), a typical PIN diode will have an RF resistance of about 1 ohm, making it a good conductor of RF. Consequently, the PIN diode makes a good RF switch.
A silicon p–n junction in reverse bias. Connecting the p-type region to the negative terminal of the voltage supply and the n-type region to the positive terminal corresponds to reverse bias. If a diode is reverse-biased, the voltage at the cathode is comparatively higher than at the anode. Therefore, very little current flows until the diode ...
In electronics, an avalanche diode is a diode (made from silicon or other semiconductor) that is designed to experience avalanche breakdown at a specified reverse bias voltage. The junction of an avalanche diode is designed to prevent current concentration and resulting hot spots, so that the diode is undamaged by the breakdown.
The device does not attain its full blocking capability until the reverse current ceases. Reverse biased: For a bias between breakdown and 0 V, the reverse current is very small and asymptotically approaches -I s. For a normal P–N rectifier diode, the reverse current through the device is in the micro-ampere (μA) range.
A Zener diode is a special type of diode designed to reliably allow current to flow "backwards" (inverted polarity) when a certain set reverse voltage, known as the Zener voltage, is reached. Zener diodes are manufactured with a great variety of Zener voltages and some are even variable.
Nonideal p–n diode current-voltage characteristics. The ideal diode has zero resistance for the forward bias polarity, and infinite resistance (conducts zero current) for the reverse voltage polarity; if connected in an alternating current circuit, the semiconductor diode acts as an electrical rectifier.
It occurs in a reverse biased p-n diode when the electric field enables tunneling of electrons from the valence to the conduction band of a semiconductor, leading to numerous free minority carriers which suddenly increase the reverse current. [1]
Photodiodes generally operate by impact ionization, whereby a photon provides the energy to separate charge carriers in the semiconductor material into a positive and negative pair, which can thus cause a charge flow through the diode. By applying a high reverse bias voltage, any photoelectric effect in the diode can be multiplied by the ...