Search results
Results From The WOW.Com Content Network
DNA gyrase, or simply gyrase, is an enzyme within the class of topoisomerase and is a subclass of Type II topoisomerases [1] that reduces topological strain in an ATP dependent manner while double-stranded DNA is being unwound by elongating RNA-polymerase [2] or by helicase in front of the progressing replication fork.
Where DNA gyrase forms a tetramer and is capable of cleaving a double-stranded region of DNA, reverse gyrase can only cleave single stranded DNA. [ 3 ] [ 4 ] More specifically, reverse gyrase is a member of the type IA topoisomerase class; along with the ability to relax negatively or positively supercoiled DNA [ 5 ] (which does not require ATP ...
Type II topoisomerases increase or decrease the linking number of a DNA loop by 2 units, and it promotes chromosome disentanglement. For example, DNA gyrase, a type II topoisomerase observed in E. coli and most other prokaryotes, introduces negative supercoils and decreases the linking number by 2.
The diagram shows the effects of nicks on intersecting DNA in a twisted plasmid. Nicking can be used to dissipate the energy held up by intersecting states. The nicks allow the DNA to take on a circular shape. [2] The diagram shows the effects of nicks on intersecting DNA forms. A plasmid is tightly wound into a negative supercoil (a).
Negative supercoils favor local unwinding of the DNA, allowing processes such as transcription, DNA replication, and recombination. Negative supercoiling is also thought to favour the transition between B-DNA and Z-DNA , and moderate the interactions of DNA binding proteins involved in gene regulation .
Across all forms of life, DNA gyrase is the only topoisomerase that can create negative supercoiling and it is because of this unique ability that bacterial genomes possess free negative supercoils; DNA gyrase is found in all bacteria but absent from higher eukaryotes. In contrast, Topo I opposes DNA gyrase by relaxing the negatively ...
One example of a Z-DNA binding protein is the vaccinia E3L protein, which is a product of the E3L gene and mimics a mammalian protein that binds Z-DNA. [37] [38] Not only does the E3L protein have affinity to Z-DNA, it has also been found to play a role in the level of severity of virulence in mice caused by vaccinia virus, a type of poxvirus.
Cruciform DNA is found in both prokaryotes and eukaryotes and has a role in DNA transcription and DNA replication, double strand repair, DNA translocation and recombination. They also serve a function in epigenetic regulation along with biological implications such as DNA supercoiling, double strand breaks, and targets for cruciform-binding ...