When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Kernel method - Wikipedia

    en.wikipedia.org/wiki/Kernel_method

    Kernel methods owe their name to the use of kernel functions, which enable them to operate in a high-dimensional, implicit feature space without ever computing the coordinates of the data in that space, but rather by simply computing the inner products between the images of all pairs of data in the feature space. This operation is often ...

  3. Volterra series - Wikipedia

    en.wikipedia.org/wiki/Volterra_series

    The Volterra series is a model for non-linear behavior similar to the Taylor series.It differs from the Taylor series in its ability to capture "memory" effects. The Taylor series can be used for approximating the response of a nonlinear system to a given input if the output of the system depends strictly on the input at that particular time.

  4. Kernel methods for vector output - Wikipedia

    en.wikipedia.org/wiki/Kernel_methods_for_vector...

    Kernel methods are a well-established tool to analyze the relationship between input data and the corresponding output of a function. Kernels encapsulate the properties of functions in a computationally efficient way and allow algorithms to easily swap functions of varying complexity.

  5. Kernelization - Wikipedia

    en.wikipedia.org/wiki/Kernelization

    That a kernelizable and decidable problem is fixed-parameter tractable can be seen from the definition above: First the kernelization algorithm, which runs in time (| |) for some c, is invoked to generate a kernel of size (). The kernel is then solved by the algorithm that proves that the problem is decidable.

  6. Isomap - Wikipedia

    en.wikipedia.org/wiki/Isomap

    However, the kernel matrix K is not always positive semidefinite. The main idea for kernel Isomap is to make this K as a Mercer kernel matrix (that is positive semidefinite) using a constant-shifting method, in order to relate it to kernel PCA such that the generalization property naturally emerges. [6]

  7. Nonlinear programming - Wikipedia

    en.wikipedia.org/wiki/Nonlinear_programming

    NLopt (C/C++ implementation, with numerous interfaces including Julia, Python, R, MATLAB/Octave), includes various nonlinear programming solvers SciPy (de facto standard for scientific Python) has scipy.optimize solver, which includes several nonlinear programming algorithms (zero-order, first order and second order ones).

  8. Kernel perceptron - Wikipedia

    en.wikipedia.org/wiki/Kernel_perceptron

    In machine learning, the kernel perceptron is a variant of the popular perceptron learning algorithm that can learn kernel machines, i.e. non-linear classifiers that employ a kernel function to compute the similarity of unseen samples to training samples. The algorithm was invented in 1964, [1] making it the first kernel classification learner. [2]

  9. Non-linear least squares - Wikipedia

    en.wikipedia.org/wiki/Non-linear_least_squares

    Consider a set of data points, (,), (,), …, (,), and a curve (model function) ^ = (,), that in addition to the variable also depends on parameters, = (,, …,), with . It is desired to find the vector of parameters such that the curve fits best the given data in the least squares sense, that is, the sum of squares = = is minimized, where the residuals (in-sample prediction errors) r i are ...