Search results
Results From The WOW.Com Content Network
The electromagnetic theory of light adds to the old undulatory theory an enormous province of transcendent interest and importance; it demands of us not merely an explanation of all the phenomena of light and radiant heat by transverse vibrations of an elastic solid called ether, but also the inclusion of electric currents, of the permanent ...
Heinrich Rudolf Hertz (/ h ɜːr t s /, HURTS; German: [ˈhaɪnʁɪç hɛʁts]; [1] [2] 22 February 1857 – 1 January 1894) was a German physicist who first conclusively proved the existence of the electromagnetic waves predicted by James Clerk Maxwell's equations of electromagnetism.
1864 – James Clerk Maxwell publishes his papers on a dynamical theory of the electromagnetic field; 1865 – James Clerk Maxwell publishes his landmark paper A Dynamical Theory of the Electromagnetic Field, in which Maxwell's equations demonstrated that electric and magnetic forces are two complementary aspects of electromagnetism.
A theory of electromagnetism, known as classical electromagnetism, was developed by several physicists during the period between 1820 and 1873, when James Clerk Maxwell's treatise was published, which unified previous developments into a single theory, proposing that light was an electromagnetic wave propagating in the luminiferous ether. [26]
André-Marie Ampère (UK: / ˈ æ m p ɛər /, US: / ˈ æ m p ɪər /; [1] French: [ɑ̃dʁe maʁi ɑ̃pɛʁ]; 20 January 1775 – 10 June 1836) [2] was a French physicist and mathematician who was one of the founders of the science of classical electromagnetism, which he referred to as electrodynamics.
Electromagnetic rotation experiment of Faraday, 1821, the first demonstration of the conversion of electrical energy into motion [48] In 1821, soon after the Danish physicist and chemist Hans Christian Ørsted discovered the phenomenon of electromagnetism, Davy and William Hyde Wollaston tried, but failed, to design an electric motor. [3]
James Clerk Maxwell FRS FRSE (13 June 1831 – 5 November 1879) was a Scottish physicist and mathematician [1] who was responsible for the classical theory of electromagnetic radiation, which was the first theory to describe electricity, magnetism and light as different manifestations of the same phenomenon.
The theory provides a description of electromagnetic phenomena whenever the relevant length scales and field strengths are large enough that quantum mechanical effects are negligible. For small distances and low field strengths, such interactions are better described by quantum electrodynamics which is a quantum field theory.