When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Sample complexity - Wikipedia

    en.wikipedia.org/wiki/Sample_complexity

    A learning algorithm over is a computable map from to . In other words, it is an algorithm that takes as input a finite sequence of training samples and outputs a function from X {\displaystyle X} to Y {\displaystyle Y} .

  3. Kernel method - Wikipedia

    en.wikipedia.org/wiki/Kernel_method

    Empirically, for machine learning heuristics, choices of a function that do not satisfy Mercer's condition may still perform reasonably if at least approximates the intuitive idea of similarity. [6] Regardless of whether k {\displaystyle k} is a Mercer kernel, k {\displaystyle k} may still be referred to as a "kernel".

  4. Attention (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Attention_(machine_learning)

    During the deep learning era, attention mechanism was developed to solve similar problems in encoding-decoding. [1] In machine translation, the seq2seq model, as it was proposed in 2014, [24] would encode an input text into a fixed-length vector, which would then be decoded into an output text. If the input text is long, the fixed-length vector ...

  5. Decision tree learning - Wikipedia

    en.wikipedia.org/wiki/Decision_tree_learning

    Decision tree learning is a supervised learning approach used in statistics, data mining and machine learning.In this formalism, a classification or regression decision tree is used as a predictive model to draw conclusions about a set of observations.

  6. Random subspace method - Wikipedia

    en.wikipedia.org/wiki/Random_subspace_method

    In machine learning the random subspace method, [1] also called attribute bagging [2] or feature bagging, is an ensemble learning method that attempts to reduce the correlation between estimators in an ensemble by training them on random samples of features instead of the entire feature set.

  7. Linear predictor function - Wikipedia

    en.wikipedia.org/wiki/Linear_predictor_function

    The basic form of a linear predictor function () for data point i (consisting of p explanatory variables), for i = 1, ..., n, is = + + +,where , for k = 1, ..., p, is the value of the k-th explanatory variable for data point i, and , …, are the coefficients (regression coefficients, weights, etc.) indicating the relative effect of a particular explanatory variable on the outcome.

  8. Support vector machine - Wikipedia

    en.wikipedia.org/wiki/Support_vector_machine

    [18] [19] Support vector machine weights have also been used to interpret SVM models in the past. [20] Posthoc interpretation of support vector machine models in order to identify features used by the model to make predictions is a relatively new area of research with special significance in the biological sciences.

  9. Relevance vector machine - Wikipedia

    en.wikipedia.org/wiki/Relevance_vector_machine

    In mathematics, a Relevance Vector Machine (RVM) is a machine learning technique that uses Bayesian inference to obtain parsimonious solutions for regression and probabilistic classification. [1] A greedy optimisation procedure and thus fast version were subsequently developed.