Search results
Results From The WOW.Com Content Network
This method produces a precipitate of phthalhydrazide (C 6 H 4 (CO) 2 N 2 H 2) along with the primary amine: C 6 H 4 (CO) 2 NR + N 2 H 4 → C 6 H 4 (CO) 2 N 2 H 2 + RNH 2. Gabriel synthesis generally fails with secondary alkyl halides. The first technique often produces low yields or side products. Separation of phthalhydrazide can be challenging.
The Kolbe nitrile synthesis is a method for the preparation of alkyl nitriles by reaction of the corresponding alkyl halide with a metal cyanide. [1] A side product for this reaction is the formation of an isonitrile because the cyanide ion is an ambident nucleophile. The reaction is named after Hermann Kolbe.
In chemistry, the haloform reaction (also referred to as the Lieben haloform reaction) is a chemical reaction in which a haloform (CHX 3, where X is a halogen) is produced by the exhaustive halogenation of an acetyl group (R−C(=O)CH 3, where R can be either a hydrogen atom, an alkyl or an aryl group), in the presence of a base.
Haloalkane or alkyl halides are the compounds which have the general formula "RX" where R is an alkyl or substituted alkyl group and X is a halogen (F, Cl, Br, I). Haloalkanes have been known for centuries. Chloroethane was produced in the 15th century. The systematic synthesis of such compounds developed in the 19th century in step with the ...
The Bouveault aldehyde synthesis (also known as the Bouveault reaction) is a one-pot substitution reaction that replaces an alkyl or aryl halide with a formyl group using a N,N-disubstituted formamide. [1] [2] For primary alkyl halides this produces the homologous aldehyde one carbon longer. For aryl halides this produces the corresponding ...
The coupling of an acetylide and tertiary alkyl halide is an example of a reaction that cannot be accomplished with alkali metal acetylides, which displace halides in an S N 2 fashion. The corresponding alkynylalanes are able to couple to tertiary halides via an S N 1-like mechanism. [4] (11)
In organic chemistry, the Menshutkin reaction converts a tertiary amine into a quaternary ammonium salt by reaction with an alkyl halide. Similar reactions occur when tertiary phosphines are treated with alkyl halides. Menshutkin-reaction. The reaction is the method of choice for the preparation of quaternary ammonium salts. [1]
Using a carboxylate-to-iodine ratio of 1:1 leads to an alkyl iodide product, in line with Borodin's findings and the modern understanding of the Hunsdiecker reaction. However, a 2:1 ratio favours the formation of an ester product that arises from decarboxylation of one carboxylate and coupling the resulting alkyl chain with the other. [9] [10]