When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Orthogonal coordinates - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_coordinates

    A conformal map acting on a rectangular grid. Note that the orthogonality of the curved grid is retained. While vector operations and physical laws are normally easiest to derive in Cartesian coordinates, non-Cartesian orthogonal coordinates are often used instead for the solution of various problems, especially boundary value problems, such as those arising in field theories of quantum ...

  3. Legendre polynomials - Wikipedia

    en.wikipedia.org/wiki/Legendre_polynomials

    The Legendre polynomials were first introduced in 1782 by Adrien-Marie Legendre [3] as the coefficients in the expansion of the Newtonian potential | ′ | = + ′ ′ ⁡ = = ′ + (⁡), where r and r′ are the lengths of the vectors x and x′ respectively and γ is the angle between those two vectors.

  4. Haar wavelet - Wikipedia

    en.wikipedia.org/wiki/Haar_wavelet

    Here is the reason for orthogonality: when the two supporting intervals , and , are not equal, then they are either disjoint, or else the smaller of the two supports, say ,, is contained in the lower or in the upper half of the other interval, on which the function , remains constant. It follows in this case that the product of these two Haar ...

  5. Spherical harmonics - Wikipedia

    en.wikipedia.org/wiki/Spherical_harmonics

    where γ is the angle between the vectors x and x 1. The functions : [,] are the Legendre polynomials, and they can be derived as a special case of spherical harmonics. Subsequently, in his 1782 memoir, Laplace investigated these coefficients using spherical coordinates to represent the angle γ between x 1 and x. (See Legendre polynomials ...

  6. Orthogonality - Wikipedia

    en.wikipedia.org/wiki/Orthogonality

    The line segments AB and CD are orthogonal to each other. In mathematics, orthogonality is the generalization of the geometric notion of perpendicularity.Whereas perpendicular is typically followed by to when relating two lines to one another (e.g., "line A is perpendicular to line B"), [1] orthogonal is commonly used without to (e.g., "orthogonal lines A and B").

  7. Jacobi polynomials - Wikipedia

    en.wikipedia.org/wiki/Jacobi_polynomials

    Plot of the Jacobi polynomial function (,) with = and = and = in the complex plane from to + with colors created with Mathematica 13.1 function ComplexPlot3D. In mathematics, Jacobi polynomials (occasionally called hypergeometric polynomials) (,) are a class of classical orthogonal polynomials.

  8. Rodrigues' formula - Wikipedia

    en.wikipedia.org/wiki/Rodrigues'_formula

    Let (()) = be a sequence of orthogonal polynomials defined on the interval [,] satisfying the orthogonality condition () =,, where () is a suitable weight function, is a constant depending on , and , is the Kronecker delta.

  9. Orthogonal basis - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_basis

    The concept of orthogonality may be extended to a vector space over any field of characteristic not 2 equipped with a quadratic form ⁠ ⁠.Starting from the observation that, when the characteristic of the underlying field is not 2, the associated symmetric bilinear form , = ((+) ()) allows vectors and to be defined as being orthogonal with respect to when ⁠ (+) () = ⁠.