When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Curvature - Wikipedia

    en.wikipedia.org/wiki/Curvature

    The normal curvature, k n, is the curvature of the curve projected onto the plane containing the curve's tangent T and the surface normal u; the geodesic curvature, k g, is the curvature of the curve projected onto the surface's tangent plane; and the geodesic torsion (or relative torsion), τ r, measures the rate of change of the surface ...

  3. Differentiable curve - Wikipedia

    en.wikipedia.org/wiki/Differentiable_curve

    If t = s is the natural parameter, then the tangent vector has unit length. The formula simplifies: = ′ (). The unit tangent vector determines the orientation of the curve, or the forward direction, corresponding to the increasing values of the parameter.

  4. List of formulas in Riemannian geometry - Wikipedia

    en.wikipedia.org/wiki/List_of_formulas_in...

    Note that this transformation formula is for the mean curvature vector, and the formula for the mean curvature in the hypersurface case is ~ = ( , ) where ...

  5. Frenet–Serret formulas - Wikipedia

    en.wikipedia.org/wiki/Frenet–Serret_formulas

    On the example of a torus knot, the tangent vector T, the normal vector N, and the binormal vector B, along with the curvature κ(s), and the torsion τ(s) are displayed. At the peaks of the torsion function the rotation of the Frenet–Serret frame (T,N,B) around the tangent vector is clearly visible.

  6. Curvature form - Wikipedia

    en.wikipedia.org/wiki/Curvature_form

    Curvature form in a vector bundle [ edit ] If E → B is a vector bundle, then one can also think of ω as a matrix of 1-forms and the above formula becomes the structure equation of E. Cartan:

  7. Differential geometry of surfaces - Wikipedia

    en.wikipedia.org/wiki/Differential_geometry_of...

    Curvature of general surfaces was first studied by Euler. In 1760 [4] he proved a formula for the curvature of a plane section of a surface and in 1771 [5] he considered surfaces represented in a parametric form. Monge laid down the foundations of their theory in his classical memoir L'application de l'analyse à la géometrie which appeared in ...

  8. Radius of curvature - Wikipedia

    en.wikipedia.org/wiki/Radius_of_curvature

    Radius of curvature and center of curvature. In differential geometry, the radius of curvature, R, is the reciprocal of the curvature. For a curve, it equals the radius of the circular arc which best approximates the curve at that point. For surfaces, the radius of curvature is the radius of a circle that best fits a normal section or ...

  9. Mean curvature - Wikipedia

    en.wikipedia.org/wiki/Mean_curvature

    where the normal chosen affects the sign of the curvature. The sign of the curvature depends on the choice of normal: the curvature is positive if the surface curves "towards" the normal. The formula above holds for surfaces in 3D space defined in any manner, as long as the divergence of the unit normal may be calculated. Mean Curvature may ...