Search results
Results From The WOW.Com Content Network
The unit "var" is allowed by the International System of Units (SI) even though the unit var is representative of a form of power. [8] Per EU directive 80/181/EEC (the "metric directive"), the correct symbol is lower-case "var", [1] although the spellings "Var" and "VAr" are commonly seen, and "VAR" is widely used throughout the power industry.
400 V low voltage secondary side distribution transformer with primary 12 kV; 200 kVA (up to 1000 kVA also common) [7] 10 3: 2 kA 10.5 kV secondary side from an electrical substation with primary 115 kV; 63 MVA [8] 9.3 kA 2.7V, Ultracapacitor short circuit current [9] 10 4: 25 kA Lorentz force can crusher pinch [10] 30 kA Typical lightning ...
Unit name Symbol Base units E energy: joule: J = C⋅V = W⋅s kg⋅m 2 ⋅s −2: Q electric charge: coulomb: C A⋅s I electric current: ampere: A = C/s = W/V A J electric current density: ampere per square metre A/m 2: A⋅m −2: U, ΔV; Δϕ; E, ξ potential difference; voltage; electromotive force: volt: V = J/C kg⋅m 2 ⋅s −3 ⋅A ...
In the International System of Units, the unit of power is the watt, equal to one joule per second. Power is a scalar quantity. Specifying power in particular systems may require attention to other quantities; for example, the power involved in moving a ground vehicle is the product of the aerodynamic drag plus traction force on the wheels, and ...
Ampère's force law [15] [16] states that there is an attractive or repulsive force between two parallel wires carrying an electric current. This force is used in the formal definition of the ampere. The SI unit of charge, the coulomb, was then defined as "the quantity of electricity carried in 1 second by a current of 1 ampere".
Product of a force and the perpendicular distance of the force from the point about which it is exerted newton-metre (N⋅m) L 2 M T −2: bivector (or pseudovector in 3D) Velocity: v →: Moved distance per unit time: the first time derivative of position m/s L T −1: vector Wavevector: k →
where I is the current through the conductor in units of amperes, V is the potential difference measured across the conductor in units of volts, and R is the resistance of the conductor in units of ohms. More specifically, Ohm's law states that the R in this relation is constant, independent of the current. [16]
Electric power is the rate of transfer of electrical energy within a circuit.Its SI unit is the watt, the general unit of power, defined as one joule per second.Standard prefixes apply to watts as with other SI units: thousands, millions and billions of watts are called kilowatts, megawatts and gigawatts respectively.