Ad
related to: overclocking laptop cpu
Search results
Results From The WOW.Com Content Network
The purpose of overclocking is to increase the operating speed of a given component. [3] Normally, on modern systems, the target of overclocking is increasing the performance of a major chip or subsystem, such as the main processor or graphics controller, but other components, such as system memory or system buses (generally on the motherboard), are commonly involved.
Overclocking is the process of forcing your computer to run faster than it's intended to go, which can help you run advanced programs on an older PC.
Processor performance states are defined by the Advanced Configuration and Power Interface (ACPI) specification, an open standard supported by all major operating systems; no additional software or drivers are required to support the technology. [1] The design concept behind Turbo Boost is commonly referred to as "dynamic overclocking". [2]
These adjustments provide the two common methods of overclocking and underclocking a computer, perhaps combined with some adjustment of CPU or memory voltages (changing oscillator crystals occurs only rarely); note that careless overclocking can cause damage to a CPU or other component due to overheating or even voltage breakdown.
With CPUs being multiplier locked, the only way to overclock is to increase the BClk, which can be raised by only 5–7% without other hardware components failing. As a work around, Intel made available K/X-series processors, which feature unlocked multipliers; with a multiplier cap of 57 for Sandy Bridge. [45]
But a modern CPU (having overclocking potential) can work at 2.5 GHz (even if it is designed to work at 2 GHz) flawlessly without giving any problem of stability. To keep running overclocked CPU at 2.5 GHz or even at higher speeds (by increasing FSB) we need to slow down memory clock so as to achieve a stable system.
Dynamic frequency scaling (also known as CPU throttling) is a power management technique in computer architecture whereby the frequency of a microprocessor can be automatically adjusted "on the fly" depending on the actual needs, to conserve power and reduce the amount of heat generated by the chip.
AMD Turbo Core a.k.a. AMD Core Performance Boost (CPB) is a dynamic frequency scaling technology implemented by AMD that allows the processor to dynamically adjust and control the processor operating frequency in certain versions of its processors which allows for increased performance when needed while maintaining lower power and thermal parameters during normal operation. [1]