Search results
Results From The WOW.Com Content Network
The state space or phase space is the geometric space in which the axes are the state variables. The system state can be represented as a vector , the state vector . If the dynamical system is linear, time-invariant, and finite-dimensional, then the differential and algebraic equations may be written in matrix form.
If the size of the state space is finite, calculating the size of the state space is a combinatorial problem. [4] For example, in the Eight queens puzzle, the state space can be calculated by counting all possible ways to place 8 pieces on an 8x8 chessboard. This is the same as choosing 8 positions without replacement from a set of 64, or
The state-transition matrix is used to find the solution to a general state-space representation of a linear system in the following form ˙ = () + (), =, where () are the states of the system, () is the input signal, () and () are matrix functions, and is the initial condition at .
State space search is a process used in the field of computer science, including artificial intelligence (AI), in which successive configurations or states of an instance are considered, with the intention of finding a goal state with the desired property. Problems are often modelled as a state space, a set of states that a problem
This quantum state can be represented as a superposition of basis states. In principle one is free to choose the set of basis states, as long as they span the state space. If one chooses the (generalized) eigenfunctions of the position operator as a set of basis functions, one speaks of a state as a wave function ψ(r) in position space.
By Gelfand representation, every commutative C*-algebra A is of the form C 0 (X) for some locally compact Hausdorff X. In this case, S(A) consists of positive Radon measures on X, and the pure states are the evaluation functionals on X. More generally, the GNS construction shows that every state is, after choosing a suitable representation, a ...
State-space representation is especially powerful as it allows complex multi-order differential system to be solved as a system of first-order equations instead. The general form of the state equation is ˙ = + where () is a column matrix of the state variables, or the unknowns of the system.
Consider a physical system modeled in state-space representation. A system is said to be observable if, for every possible evolution of state and control vectors, the current state can be estimated using only the information from outputs (physically, this generally corresponds to information obtained by sensors). In other words, one can ...