When.com Web Search

  1. Ad

    related to: infinite horizon formula physics 3 equations calculator

Search results

  1. Results From The WOW.Com Content Network
  2. Penrose diagram - Wikipedia

    en.wikipedia.org/wiki/Penrose_diagram

    Penrose diagram of an infinite Minkowski universe, horizontal axis u, vertical axis v. In theoretical physics, a Penrose diagram (named after mathematical physicist Roger Penrose) is a two-dimensional diagram capturing the causal relations between different points in spacetime through a conformal treatment of infinity.

  3. Optimal control - Wikipedia

    en.wikipedia.org/wiki/Optimal_control

    A particular form of the LQ problem that arises in many control system problems is that of the linear quadratic regulator (LQR) where all of the matrices (i.e., , , , and ) are constant, the initial time is arbitrarily set to zero, and the terminal time is taken in the limit (this last assumption is what is known as infinite horizon). The LQR ...

  4. Bekenstein bound - Wikipedia

    en.wikipedia.org/wiki/Bekenstein_bound

    According to the Bekenstein bound, the entropy of a black hole is proportional to the number of Planck areas that it would take to cover the black hole's event horizon.. In physics, the Bekenstein bound (named after Jacob Bekenstein) is an upper limit on the thermodynamic entropy S, or Shannon entropy H, that can be contained within a given finite region of space which has a finite amount of ...

  5. Algebraic Riccati equation - Wikipedia

    en.wikipedia.org/wiki/Algebraic_Riccati_equation

    which is known as the discrete-time dynamic Riccati equation of this problem. The steady-state characterization of P, relevant for the infinite-horizon problem in which T goes to infinity, can be found by iterating the dynamic equation repeatedly until it converges; then P is characterized by removing the time subscripts from the dynamic equation.

  6. Linear–quadratic regulator - Wikipedia

    en.wikipedia.org/wiki/Linear–quadratic_regulator

    The case where the system dynamics are described by a set of linear differential equations and the cost is described by a quadratic function is called the LQ problem. One of the main results in the theory is that the solution is provided by the linear–quadratic regulator (LQR), a feedback controller whose equations are given below.

  7. Cosmological horizon - Wikipedia

    en.wikipedia.org/wiki/Cosmological_horizon

    A cosmological horizon is a measure of the distance from which one could possibly retrieve information. [1] This observable constraint is due to various properties of general relativity, the expanding universe, and the physics of Big Bang cosmology. Cosmological horizons set the size and scale of the observable universe. This article explains a ...

  8. Horizon - Wikipedia

    en.wikipedia.org/wiki/Horizon

    For radar (e.g. for wavelengths 300 to 3 mm i.e. frequencies between 1 and 100 GHz) the radius of the Earth may be multiplied by 4/3 to obtain an effective radius giving a factor of 4.12 in the metric formula i.e. the radar horizon will be 15% beyond the geometrical horizon or 7% beyond the visual. The 4/3 factor is not exact, as in the visual ...

  9. Particle horizon - Wikipedia

    en.wikipedia.org/wiki/Particle_horizon

    The particle horizon (also called the cosmological horizon, the comoving horizon (in Scott Dodelson's text), or the cosmic light horizon) is the maximum distance from which light from particles could have traveled to the observer in the age of the universe.