Search results
Results From The WOW.Com Content Network
A centripetal force (from Latin centrum, "center" and petere, "to seek" [1]) is a force that makes a body follow a curved path.The direction of the centripetal force is always orthogonal to the motion of the body and towards the fixed point of the instantaneous center of curvature of the path.
Classical mechanics is the branch of physics used to describe the motion of macroscopic objects. [1] It is the most familiar of the theories of physics. The concepts it covers, such as mass, acceleration, and force, are commonly used and known. [2]
For illustration, the first term on the left-hand side is zero for circular orbits, and the applied inwards force equals the centripetal force requirement, as expected. If L is not zero the definition of angular momentum allows a change of independent variable from t {\displaystyle t} to θ {\displaystyle \theta }
Since the sum of all forces is the centripetal force, drawing centripetal force into a free body diagram is not necessary and usually not recommended. Using F net = F c {\displaystyle F_{\text{net}}=F_{c}} , we can draw free body diagrams to list all the forces acting on an object and then set it equal to F c {\displaystyle F_{c}} .
Lorentz force on a charged particle (of charge q) in motion (velocity v), used as the definition of the E field and B field. Here subscripts e and m are used to differ between electric and magnetic charges. The definitions for monopoles are of theoretical interest, although real magnetic dipoles can be described using pole strengths.
the stack alphabet in the formal definition of a pushdown automaton, or the tape-alphabet in the formal definition of a Turing machine; the Feferman–Schütte ordinal Γ 0; represents: the specific weight of substances; the lower incomplete gamma function; the third angle in a triangle, opposite the side c
With respect to a coordinate frame whose origin coincides with the body's center of mass for τ() and an inertial frame of reference for F(), they can be expressed in matrix form as:
The formula is dimensionless, describing a ratio true for all units of measure applied uniformly across the formula. If the numerical value a {\displaystyle \mathbf {a} } is measured in meters per second squared, then the numerical values v {\displaystyle v\,} will be in meters per second, r {\displaystyle r\,} in meters, and ω {\displaystyle ...