When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Confusion matrix - Wikipedia

    en.wikipedia.org/wiki/Confusion_matrix

    Confusion matrix is not limited to binary classification and can be used in multi-class classifiers as well. The confusion matrices discussed above have only two conditions: positive and negative. For example, the table below summarizes communication of a whistled language between two speakers, with zero values omitted for clarity. [20]

  3. Evaluation of binary classifiers - Wikipedia

    en.wikipedia.org/wiki/Evaluation_of_binary...

    These can be arranged into a 2×2 contingency table (confusion matrix), conventionally with the test result on the vertical axis and the actual condition on the horizontal axis. These numbers can then be totaled, yielding both a grand total and marginal totals. Totaling the entire table, the number of true positives, false negatives, true ...

  4. Decision tree learning - Wikipedia

    en.wikipedia.org/wiki/Decision_tree_learning

    The resulting number gives an estimate on how many positive examples the feature could correctly identify within the data, with higher numbers meaning that the feature could correctly classify more positive samples. Below is an example of how to use the metric when the full confusion matrix of a certain feature is given: Feature A Confusion Matrix

  5. Binary classification - Wikipedia

    en.wikipedia.org/wiki/Binary_classification

    Genetic Programming; Multi expression programming; Linear genetic programming; Each classifier is best in only a select domain based upon the number of observations, the dimensionality of the feature vector, the noise in the data and many other factors. For example, random forests perform better than SVM classifiers for 3D point clouds. [2] [3]

  6. Multiclass classification - Wikipedia

    en.wikipedia.org/wiki/Multiclass_classification

    For example, deciding on whether an image is showing a banana, an orange, or an apple is a multiclass classification problem, with three possible classes (banana, orange, apple), while deciding on whether an image contains an apple or not is a binary classification problem (with the two possible classes being: apple, no apple).

  7. Precision and recall - Wikipedia

    en.wikipedia.org/wiki/Precision_and_recall

    In a classification task, the precision for a class is the number of true positives (i.e. the number of items correctly labelled as belonging to the positive class) divided by the total number of elements labelled as belonging to the positive class (i.e. the sum of true positives and false positives, which are items incorrectly labelled as belonging to the class).

  8. Non-negative matrix factorization - Wikipedia

    en.wikipedia.org/wiki/Non-negative_matrix...

    For example, if V is an m × n matrix, W is an m × p matrix, and H is a p × n matrix then p can be significantly less than both m and n. Here is an example based on a text-mining application: Let the input matrix (the matrix to be factored) be V with 10000 rows and 500 columns where words are in rows and documents are in columns. That is, we ...

  9. Naive Bayes classifier - Wikipedia

    en.wikipedia.org/wiki/Naive_Bayes_classifier

    For example, a fruit may be considered to be an apple if it is red, round, and about 10 cm in diameter. A naive Bayes classifier considers each of these features to contribute independently to the probability that this fruit is an apple, regardless of any possible correlations between the color, roundness, and diameter features.