Search results
Results From The WOW.Com Content Network
The involute gear profile, sometimes credited to Leonhard Euler, [1] was a fundamental advance in machine design, since unlike with other gear systems, the tooth profile of an involute gear depends only on the number of teeth on the gear, pressure angle, and pitch. That is, a gear's profile does not depend on the gear it mates with.
An external gear can mesh with an external gear or an internal gear. When two external gears mesh together they rotate in the opposite directions. An internal gear can only mesh with an external gear and the gears rotate in the same direction. Due to the close positioning of shafts, internal gear assemblies are more compact than external gear ...
In a cylindrical spur gear or straight-cut gear, the tooth faces are straight along the direction parallel to the axis of rotation. Any imaginary cylinder with the same axis will cut the teeth along parallel straight lines. The teeth can be either internal or external. Two spur gears mesh together correctly only if fitted to parallel shafts. [38]
An automotive belt with the number "740K6" or "6K740" indicates a belt 74 inches (190 cm) in length, 6 ribs wide, with a rib pitch of 9 ⁄ 64 of an inch (3.6 mm) (a standard thickness for a K series automotive belt would be 4.5mm). A metric equivalent would be usually indicated by "6PK1880" whereby 6 refers to the number of ribs, PK refers to ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
A transmission (also called a gearbox) is a mechanical device which uses a gear set—two or more gears working together—to change the speed, direction of rotation, or torque multiplication/reduction in a machine. [1] [2] Transmissions can have a single fixed-gear ratio, multiple distinct gear ratios, or continuously variable ratios. Variable ...
A cycloidal gear is a toothed gear with a cycloidal profile. Such gears are used in mechanical clocks and watches , rather than the involute gear form used for most other gears. Cycloidal gears have advantages over involute gears in such applications in being able to be produced flat (making them easier to polish, and thereby reduce friction ...
Therefore, regardless of the worm's size (sensible engineering limits notwithstanding), the gear ratio is the "size of the worm wheel - to - 1". Given a single-start worm, a 20-tooth worm wheel reduces the speed by the ratio of 20:1. With spur gears, a gear of 12 teeth must match with a 240-tooth gear to achieve the same 20:1 ratio.