When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Prism (optics) - Wikipedia

    en.wikipedia.org/wiki/Prism_(optics)

    Dispersive prisms are used to break up light into its constituent spectral colors because the refractive index depends on wavelength; the white light entering the prism is a mixture of different wavelengths, each of which gets bent slightly differently. Blue light is slowed more than red light and will therefore be bent more than red light.

  3. Dispersion (optics) - Wikipedia

    en.wikipedia.org/wiki/Dispersion_(optics)

    From Snell's law it can be seen that the angle of refraction of light in a prism depends on the refractive index of the prism material. Since that refractive index varies with wavelength, it follows that the angle that the light is refracted by will also vary with wavelength, causing an angular separation of the colors known as angular dispersion.

  4. Dispersive prism - Wikipedia

    en.wikipedia.org/wiki/Dispersive_prism

    This is a result of the prism material's index of refraction varying with wavelength (dispersion). Generally, longer wavelengths (red) undergo a smaller deviation than shorter wavelengths (blue). The dispersion of white light into colors by a prism led Sir Isaac Newton to conclude that white light consisted of a mixture of different colors.

  5. Minimum deviation - Wikipedia

    en.wikipedia.org/wiki/Minimum_deviation

    This angle of incidence where the angle of deviation in a prism is minimum is called the minimum deviation position of the prism and that very deviation angle is known as the minimum angle of deviation (denoted by δ min, D λ, or D m). Light is deflected as it enters a material with refractive index > 1. A ray of light is deflected twice in a ...

  6. Refraction - Wikipedia

    en.wikipedia.org/wiki/Refraction

    Rainbows are formed by dispersion of light, in which the refraction angle depends on the light's frequency. Refraction is also responsible for rainbows and for the splitting of white light into a rainbow-spectrum as it passes through a glass prism. Glass and water have higher refractive indexes than air.

  7. Refractive index - Wikipedia

    en.wikipedia.org/wiki/Refractive_index

    The second prism should have an index of refraction higher than that of the liquid, so that light only enters the prism at angles smaller than the critical angle for total reflection. This angle can then be measured either by looking through a telescope, [clarification needed] or with a digital photodetector placed in the focal plane of a lens.

  8. Prism spectrometer - Wikipedia

    en.wikipedia.org/wiki/Prism_spectrometer

    The prism refracts light into its different colors (wavelengths). The dispersion occurs because the angle of refraction is dependent on the refractive index of the prism's material, which in turn is slightly dependent on the wavelength of light that is traveling through it.

  9. List of refractive indices - Wikipedia

    en.wikipedia.org/wiki/List_of_refractive_indices

    Refraction at interface. Many materials have a well-characterized refractive index, but these indices often depend strongly upon the frequency of light, causing optical dispersion. Standard refractive index measurements are taken at the "yellow doublet" sodium D line, with a wavelength (λ) of 589 nanometers.