Ad
related to: differentiation rules and formulas list
Search results
Results From The WOW.Com Content Network
Logarithmic differentiation is a technique which uses logarithms and its differentiation rules to simplify certain expressions before actually applying the derivative. [ citation needed ] Logarithms can be used to remove exponents, convert products into sums, and convert division into subtraction — each of which may lead to a simplified ...
Newton's notation for differentiation; Leibniz's notation for differentiation; Simplest rules Derivative of a constant; Sum rule in differentiation; Constant factor rule in differentiation; Linearity of differentiation; Power rule; Chain rule; Local linearization; Product rule; Quotient rule; Inverse functions and differentiation; Implicit ...
In mathematics, the derivative is a fundamental tool that quantifies the sensitivity to change of a function's output with respect to its input. The derivative of a function of a single variable at a chosen input value, when it exists, is the slope of the tangent line to the graph of the function at that point.
Pages in category "Differentiation rules" The following 11 pages are in this category, out of 11 total. ... Faà di Bruno's formula; G. General Leibniz rule; I.
For algebraic formulas one may alternatively use the left-most vector position. ... Differentiation rules – Rules for computing derivatives of functions;
This states that differentiation is the reverse process to integration. Differentiation has applications in nearly all quantitative disciplines. In physics, the derivative of the displacement of a moving body with respect to time is the velocity of the body, and the derivative of the velocity with respect to time is acceleration.
Differentiation rules – Rules for computing derivatives of functions Implicit function theorem – On converting relations to functions of several real variables Integration of inverse functions – Mathematical theorem, used in calculus Pages displaying short descriptions of redirect targets
In calculus, the chain rule is a formula that expresses the derivative of the composition of two differentiable functions f and g in terms of the derivatives of f and g.More precisely, if = is the function such that () = (()) for every x, then the chain rule is, in Lagrange's notation, ′ = ′ (()) ′ (). or, equivalently, ′ = ′ = (′) ′.