Search results
Results From The WOW.Com Content Network
The statistic is easily computed using the first and third quartiles, Q 1 and Q 3, respectively) for each data set. The quartile coefficient of dispersion is the ratio of half of the interquartile range (IQR) to the average of the quartiles (the midhinge): [1] = + = +.
It is defined as the difference between the 75th and 25th percentiles of the data. [2] [3] [4] To calculate the IQR, the data set is divided into quartiles, or four rank-ordered even parts via linear interpolation. [1] These quartiles are denoted by Q 1 (also called the lower quartile), Q 2 (the median), and Q 3 (also called the
Another method of grouping the data is to use some qualitative characteristics instead of numerical intervals. For example, suppose in the above example, there are three types of students: 1) Below normal, if the response time is 5 to 14 seconds, 2) normal if it is between 15 and 24 seconds, and 3) above normal if it is 25 seconds or more, then the grouped data looks like:
The Interquartile Range (IQR), defined as the difference between the upper and lower quartiles (), may be used to characterize the data when there may be extremities that skew the data; the interquartile range is a relatively robust statistic (also sometimes called "resistance") compared to the range and standard deviation. There is also a ...
The rank of the third quartile is 10×(3/4) = 7.5, which rounds up to 8. The eighth value in the population is 15. 15 Fourth quartile Although not universally accepted, one can also speak of the fourth quartile. This is the maximum value of the set, so the fourth quartile in this example would be 20.
Common examples of measures of statistical dispersion are the variance, standard deviation, and interquartile range. For instance, when the variance of data in a set is large, the data is widely scattered. On the other hand, when the variance is small, the data in the set is clustered.
If data are placed in order, then the lower quartile is central to the lower half of the data and the upper quartile is central to the upper half of the data. These quartiles are used to calculate the interquartile range, which helps to describe the spread of the data, and determine whether or not any data points are outliers.
The first quartile value can be easily determined by finding the "middle" number between the minimum and the median. For the hourly temperatures, the "middle" number found between 57°F and 70°F is 66°F. The third quartile value (Q 3 or 75th percentile) is the number that marks three quarters of the ordered data set. In other words, there are ...