Search results
Results From The WOW.Com Content Network
The corresponding mechanisms are primarily targeted on the control of ribosome recruitment on the initiation codon, but can also involve modulation of peptide elongation, termination of protein synthesis, or ribosome biogenesis. While these general concepts are widely conserved, some of the finer details in this sort of regulation have been ...
EN Trifonov and ZM Frenkel. 2009. "Evolution of protein modularity. Current Opinion in Structural Biology". 19:335-340. CR Baker, LN Booth, TR Sorrells, AD Johnson. 2012. "Protein Modularity, Cooperative Binding, and Hybrid Regulatory States Underlie Transcriptional Network Diversification". Cell. 151:80-95. Y Pritykin and M Singh. 2012.
Overview of eukaryotic messenger RNA (mRNA) translation Translation of mRNA and ribosomal protein synthesis Initiation and elongation stages of translation involving RNA nucleobases, the ribosome, transfer RNA, and amino acids The three phases of translation: (1) in initiation, the small ribosomal subunit binds to the RNA strand and the initiator tRNA–amino acid complex binds to the start ...
Sophisticated programs of gene expression are widely observed in biology, for example to trigger developmental pathways, respond to environmental stimuli, or adapt to new food sources. Virtually any step of gene expression can be modulated, from transcriptional initiation , to RNA processing , and to the post-translational modification of a ...
Translation is one of the key energy consumers in cells, hence it is strictly regulated. Numerous mechanisms have evolved that control and regulate translation in eukaryotes as well as prokaryotes. Regulation of translation can impact the global rate of protein synthesis which is closely coupled to the metabolic and proliferative state of a cell.
For instance, in E. coli, 70S ribosomes form 90S dimers upon binding with a small 6.5 kDa protein, ribosome modulation factor RMF. [ 18 ] [ 19 ] These intermediate ribosome dimers can subsequently bind a hibernation promotion factor (the 10.8 kDa protein, HPF) molecule to form a mature 100S ribosomal particle, in which the dimerization ...
The adaptor hypothesis is a theoretical scheme in molecular biology to explain how information encoded in the nucleic acid sequences of messenger RNA (mRNA) is used to specify the amino acids that make up proteins during the process of translation.
Translation promotes transcription elongation and regulates transcription termination. Functional coupling between transcription and translation is caused by direct physical interactions between the ribosome and RNA polymerase ("expressome complex"), ribosome-dependent changes to nascent mRNA secondary structure which affect RNA polymerase activity (e.g. "attenuation"), and ribosome-dependent ...