Search results
Results From The WOW.Com Content Network
Two other elastic moduli are Lamé's first parameter, λ, and P-wave modulus, M, as used in table of modulus comparisons given below references. Homogeneous and isotropic (similar in all directions) materials (solids) have their (linear) elastic properties fully described by two elastic moduli, and one may choose any pair.
The two parameters together constitute a parameterization of the elastic moduli for homogeneous isotropic media, popular in mathematical literature, and are thus related to the other elastic moduli; for instance, the bulk modulus can be expressed as K = λ + 2 / 3 μ.
Elastic properties describe the reversible deformation (elastic response) of a material to an applied stress. They are a subset of the material properties that provide a quantitative description of the characteristics of a material, like its strength .
The elasticity tensor is a fourth-rank tensor describing the stress-strain relation in a linear elastic material. [ 1 ] [ 2 ] Other names are elastic modulus tensor and stiffness tensor . Common symbols include C {\displaystyle \mathbf {C} } and Y {\displaystyle \mathbf {Y} } .
The curve () describes the deflection of the beam in the direction at some position (recall that the beam is modeled as a one-dimensional object). is a distributed load, in other words a force per unit length (analogous to pressure being a force per area); it may be a function of , , or other variables.
Gassmann's equations are a set of two equations describing the isotropic elastic constants of an ensemble consisting of an isotropic, homogeneous porous medium with a fully connected pore space, saturated by a compressible fluid at pressure equilibrium.
Wood is an example of an orthotropic material. Material properties in three perpendicular directions (axial, radial, and circumferential) are different. In material science and solid mechanics, orthotropic materials have material properties at a particular point which differ along three orthogonal axes, where each axis has twofold rotational ...
The impulse excitation technique (IET) is a non-destructive material characterization technique to determine the elastic properties and internal friction of a material of interest. [1] It measures the resonant frequencies in order to calculate the Young's modulus , shear modulus , Poisson's ratio and internal friction of predefined shapes like ...