Search results
Results From The WOW.Com Content Network
Two other elastic moduli are Lamé's first parameter, λ, and P-wave modulus, M, as used in table of modulus comparisons given below references. Homogeneous and isotropic (similar in all directions) materials (solids) have their (linear) elastic properties fully described by two elastic moduli, and one may choose any pair.
The two parameters together constitute a parameterization of the elastic moduli for homogeneous isotropic media, popular in mathematical literature, and are thus related to the other elastic moduli; for instance, the bulk modulus can be expressed as K = λ + 2 / 3 μ.
Elastic properties describe the reversible deformation (elastic response) of a material to an applied stress. They are a subset of the material properties that provide a quantitative description of the characteristics of a material, like its strength .
Conversion formulae Homogeneous isotropic linear elastic materials have their elastic properties uniquely determined by any two moduli among these; thus, given any two, any other of the elastic moduli can be calculated according to these formulas, provided both for 3D materials (first part of the table) and for 2D materials (second part).
The elasticity tensor is a fourth-rank tensor describing the stress-strain relation in a linear elastic material. [ 1 ] [ 2 ] Other names are elastic modulus tensor and stiffness tensor . Common symbols include C {\displaystyle \mathbf {C} } and Y {\displaystyle \mathbf {Y} } .
Expressed in terms of components with respect to a rectangular Cartesian coordinate system, the governing equations of linear elasticity are: [1]. Equation of motion: , + = where the (), subscript is a shorthand for () / and indicates /, = is the Cauchy stress tensor, is the body force density, is the mass density, and is the displacement.
In linear elasticity, the P-wave modulus, also known as the longitudinal modulus, or the constrained modulus, is one of the elastic moduli available to describe isotropic homogeneous materials. It is defined as the ratio of axial stress to axial strain in a uniaxial strain state.
The elastica theory is a theory of mechanics of solid materials developed by Leonhard Euler that allows for very large scale elastic deflections of structures. Euler (1744) and Jakob Bernoulli developed the theory for elastic lines (yielding the solution known as the elastica curve ) and studied buckling.